We report on the growth and characterization of lateral InAs/GaAs (001) quantum-dot molecules (QDMs) suitable for single QDM optical spectroscopy. The QDMs, forming by depositing InAs on GaAs surfaces with self-assembled nanoholes, are aligned along the [1 (1) over bar0] direction. The relative number of isolated single quantum dots (QDs) is substantially reduced by performing the growth on GaAs surfaces containing stepped mounds. Surface morphology and X-ray measurements suggest that the strain produced by InGaAs-filled nanoholes superimposed to the strain relaxation at the step edges are responsible for the improved QDM properties. QDMs are Ga-richer compared to single QDs, consistent with strain-enhanced intermixing. The high optical quality of single QDMs is probed by micro-photoluminescence spectroscopy in samples with QDM densities lower than 10(8) cm(-2).