Nonexistence of ground state sign-changing solutions for autonomous Schrodinger-Poisson system with critical growth

被引:0
作者
Wang, Ying [1 ]
Yuan, Rong [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger-Poisson system; critical growth; sign-changing solution; EXISTENCE; EQUATION;
D O I
10.1080/00036811.2022.2130779
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the following Schrodinger-Poisson system {-Delta u + u + phi u = vertical bar u vertical bar(p-1)u + vertical bar u vertical bar(4)u, x is an element of R-3, - Lambda phi = u(2), x is an element of R-3, where 3< p< 5. With the help of an odd Nehari manifold and 'energy doubling' property, we prove the nonexistence of ground state sign-changing solutions on H-1(R-3). In this sense, our result explains why the existing literature can only consider the existence of the ground state sign-changing solutions in the radial Sobolev space H-r(1)(R-3).
引用
收藏
页码:4652 / 4658
页数:7
相关论文
共 19 条
  • [1] A SIGN-CHANGING SOLUTION FOR THE SCHRODINGER-POISSON EQUATION IN R3
    Alves, Claudianor O.
    Souto, Marco A. S.
    Soares, Sergio H. M.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (01) : 1 - 25
  • [2] On Schrodinger-Poisson Systems
    Ambrosetti, Antonio
    [J]. MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) : 257 - 274
  • [3] Ground state solutions for the nonlinear Schrodinger-Maxwell equations
    Azzollini, A.
    Pomponio, A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) : 90 - 108
  • [4] Benci V., 1998, Topol. Methods Nonlinear Anal, V11, P283, DOI [10.12775/TMNA.1998.019, DOI 10.12775/TMNA.1998.019]
  • [5] Positive solutions for some non-autonomous Schrodinger-Poisson systems
    Cerami, Giovanna
    Vaira, Giusi
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) : 521 - 543
  • [6] LEAST ENERGY SIGN-CHANGING SOLUTIONS FOR SCHROumlDINGER-POISSON SYSTEM WITH CRITICAL GROWTH
    Chen, Xiaoping
    Tang, Chunlei
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (06) : 2291 - 2312
  • [7] Nodal solutions for the Choquard equation
    Ghimenti, Marco
    Van Schaftingen, Jean
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (01) : 107 - 135
  • [8] Positive and sign-changing solutions of a Schrodinger-Poisson system involving a critical nonlinearity
    Huang, Lirong
    Rocha, Eugenio M.
    Chen, Jianqing
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (01) : 55 - 69
  • [9] Ianni I, 2013, TOPOL METHOD NONL AN, V41, P365
  • [10] Infinitely many sign-changing solutions for the nonlinear Schrodinger-Poisson system
    Liu, Zhaoli
    Wang, Zhi-Qiang
    Zhang, Jianjun
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (03) : 775 - 794