Nonexistence of ground state sign-changing solutions for autonomous Schrodinger-Poisson system with critical growth

被引:0
作者
Wang, Ying [1 ]
Yuan, Rong [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger-Poisson system; critical growth; sign-changing solution; EXISTENCE; EQUATION;
D O I
10.1080/00036811.2022.2130779
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the following Schrodinger-Poisson system {-Delta u + u + phi u = vertical bar u vertical bar(p-1)u + vertical bar u vertical bar(4)u, x is an element of R-3, - Lambda phi = u(2), x is an element of R-3, where 3< p< 5. With the help of an odd Nehari manifold and 'energy doubling' property, we prove the nonexistence of ground state sign-changing solutions on H-1(R-3). In this sense, our result explains why the existing literature can only consider the existence of the ground state sign-changing solutions in the radial Sobolev space H-r(1)(R-3).
引用
收藏
页码:4652 / 4658
页数:7
相关论文
共 19 条
[1]   A SIGN-CHANGING SOLUTION FOR THE SCHRODINGER-POISSON EQUATION IN R3 [J].
Alves, Claudianor O. ;
Souto, Marco A. S. ;
Soares, Sergio H. M. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (01) :1-25
[2]   On Schrodinger-Poisson Systems [J].
Ambrosetti, Antonio .
MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) :257-274
[3]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[4]  
Benci V., 1998, Topol. Methods Nonlinear Anal, V11, P283, DOI DOI 10.12775/TMNA.1998.019
[5]   Positive solutions for some non-autonomous Schrodinger-Poisson systems [J].
Cerami, Giovanna ;
Vaira, Giusi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) :521-543
[6]   LEAST ENERGY SIGN-CHANGING SOLUTIONS FOR SCHROumlDINGER-POISSON SYSTEM WITH CRITICAL GROWTH [J].
Chen, Xiaoping ;
Tang, Chunlei .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (06) :2291-2312
[7]   Nodal solutions for the Choquard equation [J].
Ghimenti, Marco ;
Van Schaftingen, Jean .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (01) :107-135
[8]   Positive and sign-changing solutions of a Schrodinger-Poisson system involving a critical nonlinearity [J].
Huang, Lirong ;
Rocha, Eugenio M. ;
Chen, Jianqing .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (01) :55-69
[9]  
Ianni I, 2013, TOPOL METHOD NONL AN, V41, P365
[10]   Infinitely many sign-changing solutions for the nonlinear Schrodinger-Poisson system [J].
Liu, Zhaoli ;
Wang, Zhi-Qiang ;
Zhang, Jianjun .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (03) :775-794