Microscopic derivation of self-consistent equations of Anderson localization in a disordered medium of finite size

被引:30
作者
Cherroret, N. [1 ,2 ]
Skipetrov, S. E. [1 ,2 ]
机构
[1] Univ Grenoble 1, Lab Phys Modelisat Milieux Condenses, F-38042 Grenoble 09, France
[2] Univ Grenoble 1, CNRS, UMR 5493, F-38042 Grenoble 09, France
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 04期
关键词
D O I
10.1103/PhysRevE.77.046608
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a microscopic derivation of self-consistent equations of Anderson localization in a disordered medium of finite size. The derivation leads to a renormalized, position-dependent diffusion coefficient. The position dependence of the latter is due to the position dependence of return probability in a bounded medium.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Finite-size bosonization and self-consistent harmonic approximation [J].
Mocanu, C ;
Dzierzawa, M ;
Schwab, P ;
Eckern, U .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (36) :6445-6451
[32]   Self-consistent derivation of subgrid stresses for large-scale fluid equations [J].
Minotti, Fernando O. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (01) :429-434
[33]   VARIATIONAL DERIVATION OF SELF-CONSISTENT FIELD-EQUATIONS FOR MULTIPLE PAIRS OF FERMIONS [J].
MALIK, FB ;
RICHARDSON, RH ;
SHAPIRO, JY .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1988, 14 (05) :535-544
[34]   Self-consistent derivation of subgrid stresses for large-scale fluid equations [J].
Minotti, FO .
PHYSICAL REVIEW E, 2000, 61 (01) :429-434
[36]   Microscopic derivation of collective Hamiltonian by means of the adiabatic self-consistent collective coordinate method [J].
Hinohara, Nobuo ;
Nakatsukasa, Takashi ;
Matsuo, Masayuki ;
Matsuyanagi, Kenichi .
PROGRESS OF THEORETICAL PHYSICS, 2008, 119 (01) :59-101
[37]   ON THE SELF-CONSISTENT SOLUTION OF THE PERIODIC ANDERSON MODEL [J].
MATLAK, M ;
ZIELINSKI, J .
ACTA PHYSICA POLONICA A, 1981, 60 (03) :343-352
[38]   SELF-CONSISTENT DYNAMIC THEORY FOR THE ANDERSON LATTICE [J].
KIM, CI ;
KURAMOTO, Y ;
KASUYA, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1990, 59 (07) :2414-2425
[39]   SELF-CONSISTENT TREATMENT OF TWO-DIMENSIONAL ANDERSON LOCALIZATION IN MAGNETIC-FIELDS [J].
YOSHIOKA, D ;
ONO, Y ;
FUKUYAMA, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (10) :3419-3426
[40]   Anderson localization in finite disordered vibrating rods [J].
Flores, J. ;
Gutierrez, L. ;
Mendez-Sanchez, R. A. ;
Monsivais, G. ;
Mora, P. ;
Morales, A. .
EPL, 2013, 101 (06)