AN-type Dunkl operators and new spin Calogero-Sutherland models

被引:30
作者
Finkel, F [1 ]
Gómez-Ullate, D [1 ]
González-López, A [1 ]
Rodríguez, MA [1 ]
Zhdanov, R [1 ]
机构
[1] Univ Complutense, Fac Ciencias Fis, Dept Fis Teor 2, E-28040 Madrid, Spain
关键词
D O I
10.1007/s002200100468
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new family of AN-type Dunkl operators preserving a polynomial subspace of finite dimension is constructed. Using a general quadratic combination of these operators and the usual Dunkl operators, several new families of exactly and quasi-exactly solvable quantum spin Calogero-Sutherland models are obtained. These include, in particular, three families of quasi-exactly solvable elliptic spin Hamiltonians.
引用
收藏
页码:477 / 497
页数:21
相关论文
共 44 条
[1]   The Calogero-Sutherland model and generalized classical polynomials [J].
Baker, TH ;
Forrester, PJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (01) :175-216
[2]   Spin-dependent extension of Calogero-Sutherland model through anyon-like representations of permutation operators [J].
BasuMallick, B .
NUCLEAR PHYSICS B, 1996, 482 (03) :713-730
[3]   YANG-BAXTER EQUATION IN LONG-RANGE INTERACTING SYSTEMS [J].
BERNARD, D ;
GAUDIN, M ;
HALDANE, FDM ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (20) :5219-5236
[4]   Hidden algebras of the (super) Calogero and Sutherland models [J].
Brink, L ;
Turbiner, A ;
Wyllard, N .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (03) :1285-1315
[5]   THE CALOGERO MODEL - ANYONIC REPRESENTATION, FERMIONIC EXTENSION AND SUPERSYMMETRY [J].
BRINK, L ;
HANSSON, TH ;
KONSTEIN, S ;
VASILIEV, MA .
NUCLEAR PHYSICS B, 1993, 401 (03) :591-612
[6]   ONE-DIMENSIONAL MANY-BODY PROBLEMS WITH PAIR INTERACTIONS WHOSE EXACT GROUND-STATE WAVE-FUNCTION IS OF PRODUCT TYPE [J].
CALOGERO, F .
LETTERE AL NUOVO CIMENTO, 1975, 13 (13) :507-511
[8]   Loop groups, anyons and the Calogero-Sutherland model [J].
Carey, AL ;
Langmann, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (01) :1-34
[9]   INTEGRATION OF QUANTUM MANY-BODY PROBLEMS BY AFFINE KNIZHNIK-ZAMOLODCHIKOV EQUATIONS [J].
CHEREDNIK, I .
ADVANCES IN MATHEMATICS, 1994, 106 (01) :65-95
[10]  
Cotton E., 1900, ANN ECOLE NORM, V17, P211