INCREMENTAL SHAPE LEARNING OF 3D SURFACES OF THE KNEE, DATA FROM THE OSTEOARTHRITIS INITIATIVE

被引:0
|
作者
Neubert, Ales [1 ,2 ]
Naser, Ibrahim [2 ]
Paproki, Anthony [1 ,2 ]
Engstrom, Craig [3 ]
Fripp, Jurgen [1 ]
Crozier, Stuart [2 ]
Chandra, Shekhar S. [2 ]
机构
[1] CSIRO Hlth & Biosecur, Australian E Hlth Res Ctr, Canberra, ACT, Australia
[2] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Sch Human Movement Studies, Brisbane, Qld 4072, Australia
来源
2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2016年
关键词
Incremental subspace learning; statistical shape modeling; MRI; knee; big data; SEGMENTATION; MODELS;
D O I
10.1109/ISBI.2016.7493406
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Traditional shape learning of medical image data has been implemented via Principal Component Analysis (PCA). These PCA based statistical shape models batch process all shapes at once to generate a fixed model of shape variation as principal components, which may require significant computation resources for large number of shapes. This paper applies incremental PCA (IPCA) on a dataset of 728 surfaces (derived from magnetic resonance imaging examinations displaying the articulating bones of the knee joint) that can efficiently adapt to changes in training sets. After comparing the compactness and the accuracy of shape reconstruction of both batch PCA and IPCA models, our results show that IPCA produces a model comparable to batch PCA in terms of compactness and applicability to shape reconstruction, while requiring considerably shorter processing time and computer memory for computation.
引用
收藏
页码:881 / 884
页数:4
相关论文
共 50 条
  • [41] Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative
    Ambellan, Felix
    Tack, Alexander
    Ehlke, Moritz
    Zachow, Stefan
    MEDICAL IMAGE ANALYSIS, 2019, 52 : 109 - 118
  • [42] The Prognostic Potential of End-Stage Knee Osteoarthritis and Its Components to Predict Knee Replacement: Data From the Osteoarthritis Initiative
    Driban, Jeffrey B.
    Lu, Bing
    Flechsenhar, Klaus
    Lo, Grace H.
    McAlindon, Timothy E.
    JOURNAL OF RHEUMATOLOGY, 2023, 50 (11) : 1481 - 1487
  • [43] Progression of Bone Marrow Lesions and the Development of Knee Osteoarthritis: Osteoarthritis Initiative Data
    Moradi, Kamyar
    Mohammadi, Soheil
    Roemer, Frank W.
    Momtazmanesh, Sara
    Hathaway, Quincy
    Ibad, Hamza Ahmed
    Hunter, David J.
    Guermazi, Ali
    Demehri, Shadpour
    RADIOLOGY, 2024, 312 (03)
  • [44] Knee Osteoarthritis and Frailty: Findings From the Multicenter Osteoarthritis Study and Osteoarthritis Initiative
    Misra, Devyani
    Felson, David T.
    Silliman, Rebecca A.
    Nevitt, Michael
    Lewis, Cora E.
    Torner, James
    Neogi, Tuhina
    JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 2015, 70 (03): : 337 - 342
  • [45] Knee Flexion Contracture Associated With a Contracture and Worse Function of the Contralateral Knee: Data From the Osteoarthritis Initiative
    Campbell, T. Mark
    Trudel, Guy
    ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2020, 101 (04): : 624 - 632
  • [46] DeepKOA: a deep-learning model for predicting progression in knee osteoarthritis using multimodal magnetic resonance images from the osteoarthritis initiative
    Hu, Jiaping
    Zheng, Chuanyang
    Yu, Qingling
    Zhong, Lijie
    Yu, Keyan
    Chen, Yanjun
    Wang, Zhao
    Zhang, Bin
    Dou, Qi
    Zhang, Xiaodong
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (08) : 4852 - 4866
  • [47] Diagnostic performance of 3D standing CT imaging for detection of knee osteoarthritis features
    Segal, Neil A.
    Nevitt, Michael C.
    Lynch, John A.
    Niu, Jingbo
    Torner, James C.
    Guermazi, Ali
    PHYSICIAN AND SPORTSMEDICINE, 2015, 43 (03): : 213 - 220
  • [48] Knee menisci segmentation using convolutional neural networks: data from the Osteoarthritis Initiative
    Tack, A.
    Mukhopadhyay, A.
    Zachow, S.
    OSTEOARTHRITIS AND CARTILAGE, 2018, 26 (05) : 680 - 688
  • [49] Validity of clinical measures of frontal plane knee alignment: Data from the Osteoarthritis Initiative
    Riddle, Daniel L.
    MANUAL THERAPY, 2012, 17 (05) : 459 - 465
  • [50] Are structural abnormalities on knee MRI associated with osteophyte development? Data from the Osteoarthritis Initiative
    Snoeker, B. A. M.
    Ishijima, M.
    Kumm, J.
    Zhang, F.
    Turkiewicz, A. T.
    Englund, M.
    OSTEOARTHRITIS AND CARTILAGE, 2021, 29 (12) : 1701 - 1708