INCREMENTAL SHAPE LEARNING OF 3D SURFACES OF THE KNEE, DATA FROM THE OSTEOARTHRITIS INITIATIVE

被引:0
|
作者
Neubert, Ales [1 ,2 ]
Naser, Ibrahim [2 ]
Paproki, Anthony [1 ,2 ]
Engstrom, Craig [3 ]
Fripp, Jurgen [1 ]
Crozier, Stuart [2 ]
Chandra, Shekhar S. [2 ]
机构
[1] CSIRO Hlth & Biosecur, Australian E Hlth Res Ctr, Canberra, ACT, Australia
[2] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Sch Human Movement Studies, Brisbane, Qld 4072, Australia
来源
2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2016年
关键词
Incremental subspace learning; statistical shape modeling; MRI; knee; big data; SEGMENTATION; MODELS;
D O I
10.1109/ISBI.2016.7493406
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Traditional shape learning of medical image data has been implemented via Principal Component Analysis (PCA). These PCA based statistical shape models batch process all shapes at once to generate a fixed model of shape variation as principal components, which may require significant computation resources for large number of shapes. This paper applies incremental PCA (IPCA) on a dataset of 728 surfaces (derived from magnetic resonance imaging examinations displaying the articulating bones of the knee joint) that can efficiently adapt to changes in training sets. After comparing the compactness and the accuracy of shape reconstruction of both batch PCA and IPCA models, our results show that IPCA produces a model comparable to batch PCA in terms of compactness and applicability to shape reconstruction, while requiring considerably shorter processing time and computer memory for computation.
引用
收藏
页码:881 / 884
页数:4
相关论文
共 50 条
  • [1] Transfer learning-assisted 3D deep learning models for knee osteoarthritis detection: Data from the osteoarthritis initiative
    Yeoh, Pauline Shan Qing
    Lai, Khin Wee
    Goh, Siew Li
    Hasikin, Khairunnisa
    Wu, Xiang
    Li, Pei
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [2] Semantic Segmentation of 3D Medical Images Through a Kaleidoscope: Data from the Osteoarthritis Initiative
    Woo, Boyeong
    Lorenzanal, Marlon Bran
    Engstrom, Craig
    Baresic, William
    Fripp, Jurgen
    Crozier, Stuart
    Chandra, Shekhar S.
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 905 - 917
  • [3] The relationship between clinical characteristics, radiographic osteoarthritis and 3D bone area: data from the Osteoarthritis Initiative
    Barr, A. J.
    Dube, B.
    Hensor, E. M. A.
    Kingsbury, S. R.
    Peat, G.
    Bowes, M. A.
    Conaghan, P. G.
    OSTEOARTHRITIS AND CARTILAGE, 2014, 22 (10) : 1703 - 1709
  • [4] Knee osteoarthritis image registration: Data from the Osteoarthritis Initiative
    Galvan-Tejada, Jorge I.
    Celaya-Padilla, Jose M.
    Trevino, Victor
    Tamez-Pena, Jose G.
    MEDICAL IMAGING 2015: COMPUTER-AIDED DIAGNOSIS, 2015, 9414
  • [5] Automated anomaly-aware 3D segmentation of bones and cartilages in knee MR images from the Osteoarthritis Initiative
    Woo, Boyeong
    Engstrom, Craig
    Baresic, William
    Fripp, Jurgen
    Crozier, Stuart
    Chandra, Shekhar S.
    MEDICAL IMAGE ANALYSIS, 2024, 93
  • [6] Vitamin D Intake and Magnetic Resonance Parameters for Knee Osteoarthritis: Data from the Osteoarthritis Initiative
    Nicola Veronese
    Luciana La Tegola
    Maria Mattera
    Stefania Maggi
    Giuseppe Guglielmi
    Calcified Tissue International, 2018, 103 : 522 - 528
  • [7] Vitamin D Intake and Magnetic Resonance Parameters for Knee Osteoarthritis: Data from the Osteoarthritis Initiative
    Veronese, Nicola
    La Tegola, Luciana
    Mattera, Maria
    Maggi, Stefania
    Guglielmi, Giuseppe
    CALCIFIED TISSUE INTERNATIONAL, 2018, 103 (05) : 522 - 528
  • [8] Manifold learning for automatically predicting articular cartilage morphology in the knee with data from the osteoarthritis initiative (OAI)
    Donoghue, C.
    Rao, A.
    Bull, A. M. J.
    Rueckert, D.
    MEDICAL IMAGING 2011: IMAGE PROCESSING, 2011, 7962
  • [9] Validity and responsiveness of a new measure of knee osteophytes for osteoarthritis studies: data from the osteoarthritis initiative
    Hakky, M.
    Jarraya, M.
    Ratzlaff, C.
    Guermazi, A.
    Duryea, J.
    OSTEOARTHRITIS AND CARTILAGE, 2015, 23 (12) : 2199 - 2205
  • [10] Periarticular bone predicts knee osteoarthritis progression: Data from the Osteoarthritis Initiative
    Lo, Grace H.
    Schneider, Erika
    Driban, Jeffrey B.
    Price, Lori Lyn
    Hunter, David J.
    Eaton, Charles B.
    Hochberg, Marc C.
    Jackson, Rebecca D.
    Kwoh, C. Kent
    Nevitt, Michael C.
    Lynch, John A.
    McAlindon, Timothy E.
    SEMINARS IN ARTHRITIS AND RHEUMATISM, 2018, 48 (02) : 155 - 161