CHEMOTAXIS CAN PREVENT THRESHOLDS ON POPULATION DENSITY

被引:120
作者
Lankeit, Johannes [1 ]
机构
[1] Univ Paderborn, Inst Math, D-33098 Paderborn, Germany
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2015年 / 20卷 / 05期
关键词
Chemotaxis; logistic source; blow-up; hyperbolic-elliptic system; BLOW-UP; SYSTEM;
D O I
10.3934/dcdsb.2015.20.1499
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define and (for q > n) prove uniqueness and an extensibility property of W-1,W-q-solutions to u(t) = -del . (u del v) + Ku - mu u(2) 0 = Delta v - v + u partial derivative(v)v\partial derivative Omega = partial derivative(v)u\partial derivative Omega = 0, u(0, .) = u(0), in balls in R-n. They exist globally in time for mu >= 1 and, for a certain class of initial data, undergo finite-time blow-up if mu < 1. We then use this blow-up result to obtain a criterion guaranteeing some kind of structure formation in a corresponding chemotaxis system - thereby extending recent results of Winkler [26] to the higher dimensional (radially symmetric) case.
引用
收藏
页码:1499 / 1527
页数:29
相关论文
共 26 条
[1]   Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation [J].
Andasari, Vivi ;
Gerisch, Alf ;
Lolas, Georgios ;
South, Andrew P. ;
Chaplain, Mark A. J. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 63 (01) :141-171
[2]  
[Anonymous], 1986, Ann Mat Pura Appl, DOI [DOI 10.1007/BF01762360, DOI 10.1007/BF01762360.MR916688]
[3]  
[Anonymous], 1984, Elliptic Partial Differential Equations of Second Order
[4]  
[Anonymous], 2003, I. Jahresber. Deutsch. Math.-Verein.
[5]   A model aided understanding of spot pattern formation in chemotactic E. coli colonies [J].
Aotani, Akihiro ;
Mimura, Masayasu ;
Mollee, Thomas .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2010, 27 (01) :5-22
[6]  
Evans LC., 2010, Partial Differential Equations, Vvol 19
[7]  
Friedman A., 2008, DOVER BOOKS MATH SER
[8]  
Herrero M.A., 1997, Ann. Sc. Norm. Super. Pisa Cl. Sci, V24, P633
[9]   A user's guide to PDE models for chemotaxis [J].
Hillen, T. ;
Painter, K. J. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (1-2) :183-217
[10]  
HORSTMANN D., 2004, Deutsch. Math.-Verein., V2, P51