Accurate and Efficient Spectral Methods for Elliptic PDEs in Complex Domains

被引:16
作者
Gu, Yiqi [1 ]
Shen, Jie [1 ]
机构
[1] Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA
关键词
Spectral method; Petrov-Galerkin; Fictitious domain; Elliptic PDE; Error analysis; GALERKIN METHOD; DIRECT SOLVERS; EQUATIONS; PENALIZATION; SIMULATION; 2ND-ORDER;
D O I
10.1007/s10915-020-01226-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop accurate and efficient spectral methods for elliptic PDEs in complex domains using a fictitious domain approach. Two types of Petrov-Galerkin formulations with special trial and test functions are constructed, one is suitable only for the Poisson equation but with a rigorous error analysis, the other works for general elliptic equations but its analysis is not yet available. Our numerical examples demonstrate that our methods can achieve spectral convergence, i.e., the convergence rate only depends on the smoothness of the solution.
引用
收藏
页数:20
相关论文
共 50 条
[31]   NEAR-OPTIMAL APPROXIMATION METHODS FOR ELLIPTIC PDES WITH LOGNORMAL COEFFICIENTS [J].
Cohen, Albert ;
Migliorati, Giovanni .
MATHEMATICS OF COMPUTATION, 2023, 92 (342) :1665-1691
[32]   Multilevel methods for uncertainty quantification of elliptic PDEs with random anisotropic diffusion [J].
Harbrecht, Helmut ;
Schmidlin, Marc .
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2020, 8 (01) :54-81
[33]   A multi-domain spectral collocation method for PDEs in curved domains with holes [J].
Wang, Chuan ;
Wang, Zhongqing ;
Zhang, Chao .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2026, 239 :629-645
[34]   FAST FOURIER-LIKE MAPPED CHEBYSHEV SPECTRAL-GALERKIN METHODS FOR PDES WITH INTEGRAL FRACTIONAL LAPLACIAN IN UNBOUNDED DOMAINS [J].
Sheng, Changtao ;
Shen, Jie ;
Tang, Tao ;
Wang, Li-Lian ;
Yuan, Huifang .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (05) :2435-2464
[35]   Exponentially accurate spectral Monte Carlo method for linear PDEs and their error estimates [J].
Feng, Jiaying ;
Sheng, Changtao ;
Xu, Chenglong .
APPLIED NUMERICAL MATHEMATICS, 2025, 217 :278-297
[36]   GENERALIZED JACOBI RATIONAL SPECTRAL METHODS WITH ESSENTIAL IMPOSITION OF NEUMANN BOUNDARY CONDITIONS IN UNBOUNDED DOMAINS [J].
Wang, Zhong-Qing ;
Wu, Jing-Xia .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (01) :325-346
[37]   Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients [J].
Teckentrup, A. L. ;
Scheichl, R. ;
Giles, M. B. ;
Ullmann, E. .
NUMERISCHE MATHEMATIK, 2013, 125 (03) :569-600
[38]   Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications [J].
Graham, I. G. ;
Kuo, F. Y. ;
Nuyens, D. ;
Scheichl, R. ;
Sloan, I. H. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) :3668-3694
[39]   Efficient spectral and spectral element methods for Sobolev equation with diagonalization technique [J].
Yu, Xuhong ;
Wang, Mengyao .
APPLIED NUMERICAL MATHEMATICS, 2024, 201 :265-281
[40]   Efficient and Accurate Legendre Spectral Element Methods for One-Dimensional Higher Order Problems [J].
Zhang, Yang ;
Yu, Xuhong ;
Wang, Zhongqing .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (02) :461-487