Sedimentary DNA identifies modern and past macrophyte diversity and its environmental drivers in high-latitude and high-elevation lakes in Siberia and China

被引:17
作者
Stoof-Leichsenring, Kathleen R. [1 ]
Huang, Sichao [1 ,2 ]
Liu, Sisi [1 ,3 ]
Jia, Weihan [1 ,4 ]
Li, Kai [1 ,5 ]
Liu, Xingqi [4 ]
Pestryakova, Luidmila A. [6 ]
Herzschuh, Ulrike [1 ,2 ,3 ]
机构
[1] Alfred Wegener Inst, Helmholtz Ctr Polar & Marine Res, Polar Terr Environm Syst, Potsdam, Germany
[2] Univ Potsdam, Inst Biochem & Biol, Potsdam, Germany
[3] Univ Potsdam, Inst Environm Sci & Geog, Potsdam, Germany
[4] Capital Normal Univ, Coll Resource Environm & Tourism, Beijing, Peoples R China
[5] Zhejiang Normal Univ, Coll Chem & Life Sci, Jinhua, Zhejiang, Peoples R China
[6] North Eastern Fed Univ Yakutsk, Inst Nat Sci, Yakutsk, Russia
关键词
SUBMERGED MACROPHYTES; AQUATIC MACROPHYTES; LAND-USE; ARCTIC VEGETATION; TIBETAN PLATEAU; EARLY HOLOCENE; MULTI-PROXY; CLIMATE; PATTERNS; POLLEN;
D O I
10.1002/lno.12061
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Arctic and alpine aquatic ecosystems are changing rapidly under recent global warming, threatening water resources by diminishing trophic status and changing biotic composition. Macrophytes play a key role in the ecology of freshwaters and we need to improve our understanding of long-term macrophytes diversity and environmental change so far limited by the sporadic presence of macrofossils in sediments. In our study, we applied metabarcoding using the trnL P6 loop marker to retrieve macrophyte richness and composition from 179 surface-sediment samples from arctic Siberian and alpine Chinese lakes and three representative lake cores. The surface-sediment dataset suggests that macrophyte richness and composition are mostly affected by temperature and conductivity, with highest richness when mean July temperatures are higher than 12 degrees C and conductivity ranges between 40 and 400 mu S cm(-1). Compositional turnover during the Late Pleistocene/Holocene is minor in Siberian cores and characterized by a less rich, but stable emergent macrophyte community. Richness decreases during the Last Glacial Maximum and rises during wetter and warmer climate in the Late-glacial and Mid-Holocene. In contrast, we detect a pronounced change from emergent to submerged taxa at 14 ka in the Tibetan alpine core, which can be explained by increasing temperature and conductivity due to glacial runoff and evaporation. Our study provides evidence for the suitability of the trnL marker to recover modern and past macrophyte diversity and its applicability for the response of macrophyte diversity to lake-hydrochemical and climate variability predicting contrasting macrophyte changes in arctic and alpine lakes under intensified warming and human impact.
引用
收藏
页码:1126 / 1141
页数:16
相关论文
共 75 条
[1]   Effects of land use on aquatic macrophyte diversity and water quality of ponds [J].
Akasaka, Munemitsu ;
Takamura, Noriko ;
Mitsuhashi, Hiromune ;
Kadono, Yasuro .
FRESHWATER BIOLOGY, 2010, 55 (04) :909-922
[2]   Environmental determinants of lake macrophyte communities in Baikal Siberia [J].
Alahuhta, Janne ;
Rosbakh, Sergey ;
Chepinoga, Victor ;
Heino, Jani .
AQUATIC SCIENCES, 2020, 82 (02)
[3]   Response of macrophyte communities and status metrics to natural gradients and land use in boreal lakes [J].
Alahuhta, Janne ;
Kanninen, Antti ;
Vuori, Kari-Matti .
AQUATIC BOTANY, 2012, 103 :106-114
[4]  
Alahuhta J, 2011, BOREAL ENVIRON RES, V16, P185
[5]   Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation [J].
Alsos, Inger Greve ;
Lammers, Youri ;
Yoccoz, Nigel Giles ;
Jorgensen, Tina ;
Sjogren, Per ;
Gielly, Ludovic ;
Edwards, Mary E. .
PLOS ONE, 2018, 13 (04)
[6]   Late Pleistocene to Holocene vegetation and climate changes in northwestern Chukotka (Far East Russia) deduced from lakes Ilirney and Rauchuagytgyn pollen records [J].
Andreev, Andrei A. ;
Raschke, Elena ;
Biskaborn, Boris K. ;
Vyse, Stuart A. ;
Courtin, Jeremy ;
Bohmer, Thomas ;
Stoof-Leichsenring, Kathleen ;
Kruse, Stefan ;
Pestryakova, Lyudmila A. ;
Herzschuh, Ulrike .
BOREAS, 2021, 50 (03) :652-670
[7]   Vegetation and climate history in the Laptev Sea region (Arctic Siberia) during Late Quaternary inferred from pollen records [J].
Andreev, Andrei A. ;
Schirrmeister, Lutz ;
Tarasov, Pavel E. ;
Ganopolski, Andrey ;
Brovkin, Viktor ;
Siegert, Christine ;
Wetterich, Sebastian ;
Hubberten, Hans-Wolfgang .
QUATERNARY SCIENCE REVIEWS, 2011, 30 (17-18) :2182-2199
[8]  
[Anonymous], ACTA ECOL SIN, V30, P33, DOI 10.1016/j.chnaes.2009.12.006
[9]   Ice roads through lake-rich Arctic watersheds: Integrating climate uncertainty and freshwater habitat responses into adaptive management [J].
Arp, Christopher D. ;
Whitman, Matthew S. ;
Jones, Benjamin M. ;
Nigro, D. A. ;
Alexeev, Vladimir A. ;
Gaedeke, Anne ;
Fritz, Stacey ;
Daanen, Ronald ;
Liljedahl, Anna K. ;
Adams, F. J. ;
Gaglioti, Benjamin V. ;
Grosse, Guido ;
Heim, Kurt C. ;
Beaver, John R. ;
Cai, Lei ;
Engram, Melanie ;
Uher-Koch, Hannah R. .
ARCTIC ANTARCTIC AND ALPINE RESEARCH, 2019, 51 (01) :9-23
[10]   Ice cover extent drives phytoplankton and bacterial community structure in a large north-temperate lake: implications for a warming climate [J].
Beall, B. F. N. ;
Twiss, M. R. ;
Smith, D. E. ;
Oyserman, B. O. ;
Rozmarynowycz, M. J. ;
Binding, C. E. ;
Bourbonniere, R. A. ;
Bullerjahn, G. S. ;
Palmer, M. E. ;
Reavie, E. D. ;
Waters, L. C. D. R. M. K. ;
Woityra, L. C. D. R. W. C. ;
Mckay, R. M. L. .
ENVIRONMENTAL MICROBIOLOGY, 2016, 18 (06) :1704-1719