共 37 条
Real-Time Template-Assisted Manipulation of Nanoparticles in a Multilayer Nanofluidic Chip
被引:8
作者:
Chen, H. Matthew
[1
]
Pang, Lin
[1
]
Gordon, Michael S.
[1
]
Fainman, Yeshaiahu
[1
]
机构:
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
来源:
关键词:
ELECTROPHORETIC MOTION;
NANOCRYSTALS;
FABRICATION;
PARTICLES;
CRYSTALS;
ROUTE;
D O I:
10.1002/smll.201100264
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
The ability to control dynamically the flow and placement of nanoscale particles and biomolecules in a biocompatible, aqueous environment will have profound impact in advancing the fields of nanoplasmonics, nanophotonics, and medicine. Here, an approach based on electrokinetic forces is demonstrated that enables dynamically controlled placement of nanoparticles into a predefined pattern. The technique uses an applied voltage to manipulate nanoparticles in a multilayer nanofluidic chip architecture. Simulations of the nanoparticles' motion in the nanofluidic chip validate the approach and are confirmed by experimental demonstration to produce uniform 200-nm-diameter spherical nanoparticle arrays. The results are important as they provide a new method that is capable of dynamically capturing and releasing nanoscale particles and biomolecules in an aqueous environment, which could lead to the creation of reconfigurable nanostructure patterns for nanoplasmonic, nanophotonic, biological sensing, and drug-delivery applications.
引用
收藏
页码:2750 / 2757
页数:8
相关论文