Uniform Observability for a Finite Differences Discretization of a Clamped Beam Equation

被引:11
作者
Cindea, Nicolae [1 ]
Micu, Sorin [2 ,3 ]
Roventa, Ionel [2 ]
机构
[1] Univ Blaise Pascal, Math Lab, Campus Univ Cezeaur,3,Pl Vasarely, F-63178 Aubiere, France
[2] Univ Craiova, Dept Math, Craiova 200585, Romania
[3] Inst Math Stat & Appl Math, Bucharest 70700, Romania
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 08期
关键词
Beam equation; Uniform observability; Numerical controllability; Discrete multipliers method;
D O I
10.1016/j.ifacol.2016.07.460
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of this paper is to prove a uniform observability inequality for a finite differences semi-discretization of a clamped beam equation. A discrete multiplier method is employed in order to obtain the uniform observability of the eigenvectors of the matrix driving the semi-discrete system corresponding to eigenfrequencies smaller than a precise filtering Lltreshold. This result can be generalized to tlie uniform observability of every filtered solution. Numerical simulations, concerning the dual controllability problem, illustrate the theoretical results. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:315 / 320
页数:6
相关论文
共 7 条
[1]  
Bugariu I.F., 2015, MATH COMPUTATION
[2]  
Cindea N., 2016, APPROXIMATION CONTRO
[3]   Spectral conditions for admissibility and observability of Schrodinger systems: Applications to finite element discretizations [J].
Ervedoza, Sylvain .
ASYMPTOTIC ANALYSIS, 2011, 71 (1-2) :1-32
[4]  
Hughes Thomas J., 1987, FINITE ELEMENT METHO
[5]  
Infante JA, 1999, RAIRO-MATH MODEL NUM, V33, P407
[6]   Boundary controllability of the finite-difference space semi-discretizations of the beam equation [J].
Leon, L ;
Zuazua, E .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 (08) :827-862
[7]  
Tucsnak M, 2009, BIRKHAUSER ADV TEXTS, P1