First-principle study on lithium intercalated antimonides Ag3Sb and Mg3Sb2

被引:6
作者
Gnanapoongothai, Thiyagarajan [1 ,3 ]
Murugan, Ramaswamy [2 ]
Palanivel, Balan [3 ]
机构
[1] Sri Manakula Vinayagar Engn Coll, Dept Phys, Pondicherry 605017, India
[2] Pondicherry Univ, Dept Phys, Pondicherry 605014, India
[3] Pondicherry Engn Coll, Dept Phys, Pondicherry 605014, India
关键词
Li+ battery; First-principle calculation; Structural changes; Electronic properties; Insertion voltage; INTERMETALLIC-COMPOUND; ANODE MATERIALS; AB-INITIO; BATTERIES; ION; ELECTRODES; STABILITY;
D O I
10.1007/s11581-014-1303-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
First-principle calculations based on density functional theory have been performed to investigate the negative electrode behaviors, structural changes, and electronic and bonding properties of lithium intercalated antimonides Ag3Sb and Mg3Sb2. Initial intercalation of lithium to orthorhombic Ag3Sb led to form cubic Li2AgSb. Lithium insertion to hexagonal Mg3Sb2 results in cubic LiMgSb. Further insertion of lithium with the intercalated compounds Li2AgSb and LiMgSb results in to the formation of alkali antimonide Li3Sb. The structural transformation of both antimonides Ag3Sb and Mg3Sb2 followed by the insertion of Li+ ends with the formation of Li3Sb with cubic phase. The computed band structures along high symmetry directions of the Brillouin zone, and total and partial density of states clearly illustrate that the intercalation of lithium with Ag3Sb and Mg3Sb2 changes their metallic nature into semiconductor. From the charge density calculations, it is observed that the covalent bond nature in the parent phases Ag3Sb and Mg3Sb2 changed into ionic bond in the Li+ intercalated phases Li2AgSb, LiMgSb, and Li3Sb.
引用
收藏
页码:1351 / 1361
页数:11
相关论文
共 46 条
[1]  
Andreas N, 2003, J POWER SOURCES, V119-121, P95
[2]   Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides [J].
Aydinol, MK ;
Kohan, AF ;
Ceder, G ;
Cho, K ;
Joannopoulos, J .
PHYSICAL REVIEW B, 1997, 56 (03) :1354-1365
[3]  
Beleanu A, 2011, J PHYS D UNPUB
[4]   Lithium reactions with intermetallic-compound electrodes [J].
Benedek, R ;
Thackeray, MM .
JOURNAL OF POWER SOURCES, 2002, 110 (02) :406-411
[5]  
Blaha P., 2001, AUGMENTED PLANE WAVE, V60
[6]   Theoretical prediction of the elastic, electronic and optical properties of the filled tetrahedral semiconductor α-LiMgSb [J].
Bouhemadou, A. ;
Khenata, R. ;
Rached, D. ;
Amrani, B. .
COMPUTATIONAL MATERIALS SCIENCE, 2010, 49 (01) :64-69
[7]   Opportunities and challenges for first-principles materials design and applications to Li battery materials [J].
Ceder, Gerbrand .
MRS BULLETIN, 2010, 35 (09) :693-701
[8]   Fe valence determination and Li elemental distribution in lithiated FeO0.7F1.3/C nanocomposite battery materials by electron energy loss spectroscopy (EELS) [J].
Cosandey, F. ;
Su, D. ;
Sina, M. ;
Pereira, N. ;
Amatucci, G. G. .
MICRON, 2012, 43 (01) :22-29
[9]   First-principles calculations on LixNiO2:: phase stability and monoclinic distortion [J].
de Dompablo, MEAY ;
Ceder, G .
JOURNAL OF POWER SOURCES, 2003, 119 :654-657
[10]   Electrochemical reactions of polycrystalline CrSb2 in lithium batteries [J].
Fernández-Madrigal, FJ ;
Lavela, P ;
Pérez-Vicente, C ;
Tirado, JL .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 501 (1-2) :205-209