AMPK: The key to ischemia-reperfusion injury

被引:50
|
作者
Cai, Jie [1 ]
Chen, Xinyue [1 ]
Liu, Xingyu [1 ]
Li, Zhangwang [1 ]
Shi, Ao [2 ,3 ]
Tang, Xiaoyi [4 ]
Xia, Panpan [5 ]
Zhang, Jing [4 ]
Yu, Peng [5 ]
机构
[1] Nanchang Univ, Affiliated Hosp 2, Clin Med Coll 2, Nanchang, Jiangxi, Peoples R China
[2] Mayo Clin, Dept Cardiovasc Med, Rochester, MN USA
[3] Mayo Clin, Mayo Grad Sch Biomed Sci, Dept Biochem & Mol Biol, Rochester, MN USA
[4] Nanchang Univ, Affiliated Hosp 2, Dept Anesthesiol, 1st Minde Rd, Nanchang, Jiangxi, Peoples R China
[5] Nanchang Univ, Affiliated Hosp 2, Dept Metab & Endocrinol, Nanchang, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
AMPK; glycolysis and glycogen synthesis; ischemia-reperfusion injury; lipid metabolism; programmed cell death; ACTIVATED PROTEIN-KINASE; ISCHEMIA/REPERFUSION INJURY; OXIDATIVE STRESS; AUTOPHAGY; LIVER; PHOSPHORYLATION; INHIBITION; HYPOXIA/REOXYGENATION; EXPRESSION; PATHWAY;
D O I
10.1002/jcp.30875
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Ischemia-reperfusion injury (IRI) refers to a syndrome in which tissue damage is further aggravated and organ function further deteriorates when blood flow is restored after a period of tissue ischemia. Acute myocardial infarction, stress ulcer, pancreatitis, intestinal ischemia, intermittent claudication, acute tubular necrosis, postshock liver failure, and multisystem organ failure are all related to reperfusion injury. AMP-activated protein kinase (AMPK) has been identified in multiple catabolic and anabolic signaling pathways. The functions of AMPK during health and diseases are intriguing but still need further research. Except for its conventional roles as an intracellular energy switch, emerging evidence reveals the critical role of AMPK in IRI as an energy-sensing signal molecule by regulating metabolism, autophagy, oxidative stress, inflammation, and other progressions. At the same time, drugs based on AMPK for the treatment of IRI are constantly being researched and applied in clinics. In this review, we summarize the mechanisms underlying the effects of AMPK in IRI and describe the AMPK-targeting drugs in treatment, hoping to increase the understanding of AMPK in IRI and provide new insights into future clinical treatment.
引用
收藏
页码:4079 / 4096
页数:18
相关论文
共 50 条
  • [31] Higenamine alleviates cerebral ischemia-reperfusion injury in rats
    Wang, Xiaoping
    Li, Xiaojia
    Wu Jingfen
    Deng Fei
    Peng Mei
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2019, 24 : 859 - 869
  • [32] Targeted Mitochondrial Drugs for Treatment of Ischemia-Reperfusion Injury
    Peng, Jin-Fu
    Salami, Oluwabukunmi Modupe
    Habimana, Olive
    Xie, Yu-Xin
    Yao, Hui
    Yi, Guang-Hui
    CURRENT DRUG TARGETS, 2022, 23 (16) : 1526 - 1536
  • [33] Effect of Milrinone on Ischemia-Reperfusion Injury in the Rat Kidney
    Nishiki, T.
    Kitada, H.
    Okabe, Y.
    Miura, Y.
    Kurihara, K.
    Kawanami, S.
    Tanaka, M.
    TRANSPLANTATION PROCEEDINGS, 2011, 43 (05) : 1489 - 1494
  • [34] A drug cocktail for protecting against ischemia-reperfusion injury
    Krzywonos-Zawadzka, Anna
    Wozniak, Mieczyslaw
    Sawicki, Grzegorz
    Bil-Lula, Iwona
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2020, 25 : 722 - 735
  • [35] Resveratrol ameliorates subacute intestinal ischemia-reperfusion injury
    Dong, WenPeng
    Li, FanFan
    Pan, ZhiGuo
    Liu, ShenXi
    Yu, Hao
    Wang, XianYue
    Bi, ShengHui
    Zhang, WeiDa
    JOURNAL OF SURGICAL RESEARCH, 2013, 185 (01) : 182 - 189
  • [36] The roles of microRNAs in spinal cord ischemia-reperfusion injury
    Chen, Feng-Shou
    Tong, Xiang-Yi
    Fang, Bo
    Wang, Dan
    Li, Xiao-Qian
    Zhang, Zai-Li
    NEURAL REGENERATION RESEARCH, 2022, 17 (12) : 2593 - 2599
  • [37] Role of Hydrogen Sulfide in Myocardial Ischemia-Reperfusion Injury
    Zhang, Peng
    Yu, Yue
    Wang, Pei
    Shen, Hua
    Ling, Xinyu
    Xue, Xiaofei
    Yang, Qian
    Zhang, Yufeng
    Xiao, Jian
    Wang, Zhinong
    JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 2021, 77 (02) : 130 - 141
  • [38] Pharmaceutical Therapies for Necroptosis in Myocardial Ischemia-Reperfusion Injury
    Zhang, Yinchang
    Zhang, Yantao
    Zang, Jinlong
    Li, Yongnan
    Wu, Xiangyang
    JOURNAL OF CARDIOVASCULAR DEVELOPMENT AND DISEASE, 2023, 10 (07)
  • [39] Osthole ameliorates renal ischemia-reperfusion injury in rats
    Zheng, Yi
    Lu, Min
    Ma, Lulin
    Zhang, Shudong
    Qiu, Min
    Wang, Yunpeng
    JOURNAL OF SURGICAL RESEARCH, 2013, 183 (01) : 347 - 354
  • [40] Akt: A Therapeutic Target in Hepatic Ischemia-Reperfusion Injury
    Covington, Stephen M.
    Bauler, Laura D.
    Toledo-Pereyra, Luis H.
    JOURNAL OF INVESTIGATIVE SURGERY, 2017, 30 (01) : 47 - 55