A finite element time relaxation method

被引:7
作者
Becker, Roland [1 ,2 ]
Burman, Erik [3 ]
Hansbo, Peter [4 ]
机构
[1] Univ Pau, LMAP, F-64013 Pau, France
[2] Univ Pau, INR1A Bordeaux Sad Quest, F-64013 Pau, France
[3] Univ Sussex, Dept Math, Brighton BN1 9QH, E Sussex, England
[4] Chalmers, Dept Math Sci, S-41262 Gothenburg, Sweden
关键词
NAVIER-STOKES EQUATIONS; GALERKIN APPROXIMATIONS; STABILIZATION;
D O I
10.1016/j.crma.2010.12.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss a finite element time-relaxation method for high Reynolds number flows. The method uses local projections on polynomials defined on macroelements of each pair of two elements sharing a face. We prove that this method shares the optimal stability and convergence properties of the continuous interior penalty (CIP) method. We give the formulation both for the scalar convection-diffusion equation and the time-dependent incompressible Euler equations and the associated convergence results. This note finishes with some numerical illustrations. (C) 2010 Academic des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:353 / 356
页数:4
相关论文
共 11 条
[1]   A subgrid-scale deconvolution approach for shock capturing [J].
Adams, NA ;
Stolz, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 178 (02) :391-426
[2]  
Becker R, 2004, NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, P123
[3]   Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems [J].
Burman, E ;
Hansbo, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (15-16) :1437-1453
[4]   Interior penalty variational multiscale method for the incompressible Navier-Stokes equation: Monitoring artificial dissipation [J].
Burman, Erik .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (41-44) :4045-4058
[5]   Continuous interior penalty finite element method for the time-dependent Navier-Stokes equations:: space discretization and convergence [J].
Burman, Erik ;
Fernandez, Miguel A. .
NUMERISCHE MATHEMATIK, 2007, 107 (01) :39-77
[6]   Weighted error estimates of the continuous interior penalty method for singularly perturbed problems [J].
Burman, Erik ;
Guzman, Johnny ;
Leykekhman, Dmitriy .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (02) :284-314
[7]  
Connors J, 2010, MATH COMPUT, V79, P619, DOI 10.1090/S0025-5718-09-02316-3
[8]  
Guermond JL, 1999, RAIRO-MATH MODEL NUM, V33, P1293
[9]   A VELOCITY PRESSURE STREAMLINE DIFFUSION FINITE-ELEMENT METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
HANSBO, P ;
SZEPESSY, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1990, 84 (02) :175-192
[10]   The dissipative structure of variational multiscale methods for incompressible flows [J].
Principe, Javier ;
Codina, Ramon ;
Henke, Florian .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (13-16) :791-801