Fabrication and surface treatment of electron-beam evaporated niobium for low-loss coplanar waveguide resonators

被引:9
|
作者
Kowsari, D. [1 ]
Zheng, K. [1 ]
Monroe, J. T. [1 ]
Thobaben, N. J. [2 ]
Du, X. [1 ]
Harrington, P. M. [1 ,3 ]
Henriksen, E. A. [1 ,4 ]
Wisbey, D. S. [2 ]
Murch, K. W. [1 ]
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[2] St Louis Univ, Dept Phys, St Louis, MO 63103 USA
[3] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[4] Washington Univ, Inst Mat Sci & Engn, St Louis, MO 63130 USA
关键词
DIELECTRIC LOSS; SUPERCONDUCTIVITY;
D O I
10.1063/5.0066441
中图分类号
O59 [应用物理学];
学科分类号
摘要
We characterize low-loss electron-beam evaporated niobium thin films deposited under ultra-high vacuum conditions. Slow deposition yields films with a high superconducting transition temperature (9.20 +/- 0.06 K) as well as a residual resistivity ratio of 4.8. We fabricate the films into coplanar waveguide resonators to extract the intrinsic loss due to the presence of two-level-system fluctuators using microwave measurements. For a coplanar waveguide resonator gap of 2 mu m, the films exhibit filling-factor-adjusted two-level-system loss tangents as low as 1.5 x 10(-7) with single-photon regime internal quality factors in excess of one million after removing native surface oxides of the niobium. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Low-loss α-tantalum coplanar waveguide resonators on silicon wafers: fabrication, characterization and surface modification
    Lozano, D. P.
    Mongillo, M.
    Piao, X.
    Couet, S.
    Wan, D.
    Canvel, Y.
    Vadiraj, A. M.
    Ivanov, Ts
    Verjauw, J.
    Acharya, R.
    Van Damme, J.
    Mohiyaddin, F. A.
    Jussot, J.
    Gowda, P. P.
    Pacco, A.
    Raes, B.
    van de Vondel, J.
    Radu, I. P.
    Govoreanu, B.
    Swerts, J.
    Potocnik, A.
    De Greve, K.
    MATERIALS FOR QUANTUM TECHNOLOGY, 2024, 4 (02):
  • [2] Low-loss superconducting aluminum microwave coplanar waveguide resonators on sapphires for the qubit readouts
    He, Q.
    OuYang, P.
    Gao, H.
    He, S.
    Li, Y.
    Wang, Y.
    Chen, Y.
    Dai, X.
    Wei, L. F.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2022, 35 (06):
  • [3] Surface loss simulations of superconducting coplanar waveguide resonators
    Wenner, J.
    Barends, R.
    Bialczak, R. C.
    Chen, Yu
    Kelly, J.
    Lucero, Erik
    Mariantoni, Matteo
    Megrant, A.
    O'Malley, P. J. J.
    Sank, D.
    Vainsencher, A.
    Wang, H.
    White, T. C.
    Yin, Y.
    Zhao, J.
    Cleland, A. N.
    Martinis, John M.
    APPLIED PHYSICS LETTERS, 2011, 99 (11)
  • [4] LOW-LOSS LAUNCHER FOR BEAM WAVEGUIDE
    CHAFFIN, RJ
    BEYER, JB
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1964, MT12 (05) : 555 - &
  • [5] Low loss superconducting titanium nitride coplanar waveguide resonators
    Vissers, M. R.
    Gao, J.
    Wisbey, D. S.
    Hite, D. A.
    Tsuei, C. C.
    Corcoles, A. D.
    Steffen, M.
    Pappas, D. P.
    APPLIED PHYSICS LETTERS, 2010, 97 (23)
  • [6] Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist
    Gnan, M.
    Thoms, S.
    Macintyre, D. S.
    De La Rue, R. M.
    Sorel, M.
    ELECTRONICS LETTERS, 2008, 44 (02) : 115 - 116
  • [7] A low-loss 5 GHz bandpass filter using HTS quarter-wavelength coplanar waveguide resonators
    Suzuki, H
    Ma, ZW
    Kobayashi, Y
    Satoh, K
    Narahashi, S
    Nojima, T
    IEICE TRANSACTIONS ON ELECTRONICS, 2002, E85C (03) : 714 - 719
  • [8] Low-loss polymeric optical waveguides using electron-beam direct writing
    Wong, WH
    Zhou, J
    Pun, EYB
    APPLIED PHYSICS LETTERS, 2001, 78 (15) : 2110 - 2112
  • [9] Low-loss filtering switch by using dielectric waveguide resonators
    Qin, Wei
    Zhang, Peng-Fei
    Liu, Jiang
    Yang, Wen-Wen
    Chen, Jian-Xin
    INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2021, 31 (12)
  • [10] low-loss V-groove coplanar waveguide on an SOI substrate
    Zhao Yuhang
    Tong Jiarong
    Zeng Xuan
    Wang Yong
    JOURNAL OF SEMICONDUCTORS, 2009, 30 (07)