Modeling of 3D magnetic equilibrium effects on edge turbulence stability during RMP ELM suppression in tokamaks

被引:17
作者
Wilcox, R. S. [1 ]
Wingen, A. [1 ]
Cianciosa, M. R. [1 ]
Ferraro, N. M. [2 ]
Hirshman, S. P. [1 ]
Paz-Soldan, C. [3 ]
Seal, S. K. [1 ]
Shafer, M. W. [1 ]
Unterberg, E. A. [1 ]
机构
[1] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA
[2] Princeton Plasma Phys Lab, 100 Stellarator Rd, Princeton, NJ 08540 USA
[3] Gen Atom, POB 85608, San Diego, CA 92186 USA
关键词
RMP; equilibrium; turbulence; TRANSPORT; PLASMAS;
D O I
10.1088/1741-4326/aa7bad
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent experimental observations have found turbulent fluctuation structures that are non-axisymmetric in a tokamak with applied 3D fields. In this paper, two fluid resistive effects are shown to produce changes relevant to turbulent transport in the modeled 3D magnetohydrodynamic (MHD) equilibrium of tokamak pedestals with these 3D fields applied. Ideal MHD models are insufficient to reproduce the relevant effects. By calculating the ideal 3D equilibrium using the VMEC code, the geometric shaping parameters that determine linear turbulence stability, including the normal curvature and local magnetic shear, are shown to be only weakly modified by applied 3D fields in the DIII-D tokamak. These ideal MHD effects are therefore not sufficient to explain the observed changes to fluctuations and transport. Using the M3D-C1 code to model the 3D equilibrium, density is shown to be redistributed on flux surfaces in the pedestal when resistive two fluid effects are included, while islands are screened by rotation in this region. The redistribution of density results in density and pressure gradient scale lengths that vary within pedestal flux surfaces between different helically localized flux tubes. This would produce different drive terms for trapped electron mode and kinetic ballooning mode turbulence, the latter of which is expected to be the limiting factor for pedestal pressure gradients in DIII-D.
引用
收藏
页数:10
相关论文
共 30 条
[11]  
Lao L. L., 1985, NUCL FUSION, V25
[12]   MHD equilibrium reconstruction in the DIII-D tokamak [J].
Lao, LL ;
St John, HE ;
Peng, Q ;
Ferron, JR ;
Strait, EJ ;
Taylor, TS ;
Meyer, WH ;
Zhang, C ;
You, KI .
FUSION SCIENCE AND TECHNOLOGY, 2005, 48 (02) :968-977
[13]   Verification of the ideal magnetohydrodynamic response at rational surfaces in the VMEC code [J].
Lazerson, Samuel A. ;
Loizu, Joaquim ;
Hirshman, Steven ;
Hudson, Stuart R. .
PHYSICS OF PLASMAS, 2016, 23 (01)
[14]  
Lewandowski J. L. V., 1999, Computing and Visualization in Science, V1, P183, DOI 10.1007/s007910050017
[15]   Local stability analysis of three-dimensional magnetically confined plasmas [J].
Lewandowski, JLV .
AUSTRALIAN JOURNAL OF PHYSICS, 1997, 50 (05) :921-933
[16]   Increase of turbulence and transport with resonant magnetic perturbations in ELM-suppressed plasmas on DIII-D [J].
McKee, G. R. ;
Yan, Z. ;
Holland, C. ;
Buttery, R. J. ;
Evans, T. E. ;
Moyer, R. A. ;
Mordijck, S. ;
Nazikian, R. ;
Rhodes, T. L. ;
Schmitz, O. ;
Wade, M. R. .
NUCLEAR FUSION, 2013, 53 (11)
[17]  
Moyer R. A., 2017, UNPUB
[18]   Optimizing Stellarators for Turbulent Transport [J].
Mynick, H. E. ;
Pomphrey, N. ;
Xanthopoulos, P. .
PHYSICAL REVIEW LETTERS, 2010, 105 (09)
[19]   Geometry dependence of stellarator turbulence [J].
Mynick, H. E. ;
Xanthopoulos, P. ;
Boozer, A. H. .
PHYSICS OF PLASMAS, 2009, 16 (11) :110702
[20]   Equilibrium drives of the low and high field side n = 2 plasma response and impact on global confinement [J].
Paz-Soldan, C. ;
Logan, N. C. ;
Haskey, S. R. ;
Nazikian, R. ;
Strait, E. J. ;
Chen, X. ;
Ferraro, N. M. ;
King, J. D. ;
Lyons, B. C. ;
Park, J-K. .
NUCLEAR FUSION, 2016, 56 (05)