Modeling of 3D magnetic equilibrium effects on edge turbulence stability during RMP ELM suppression in tokamaks

被引:17
作者
Wilcox, R. S. [1 ]
Wingen, A. [1 ]
Cianciosa, M. R. [1 ]
Ferraro, N. M. [2 ]
Hirshman, S. P. [1 ]
Paz-Soldan, C. [3 ]
Seal, S. K. [1 ]
Shafer, M. W. [1 ]
Unterberg, E. A. [1 ]
机构
[1] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA
[2] Princeton Plasma Phys Lab, 100 Stellarator Rd, Princeton, NJ 08540 USA
[3] Gen Atom, POB 85608, San Diego, CA 92186 USA
关键词
RMP; equilibrium; turbulence; TRANSPORT; PLASMAS;
D O I
10.1088/1741-4326/aa7bad
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent experimental observations have found turbulent fluctuation structures that are non-axisymmetric in a tokamak with applied 3D fields. In this paper, two fluid resistive effects are shown to produce changes relevant to turbulent transport in the modeled 3D magnetohydrodynamic (MHD) equilibrium of tokamak pedestals with these 3D fields applied. Ideal MHD models are insufficient to reproduce the relevant effects. By calculating the ideal 3D equilibrium using the VMEC code, the geometric shaping parameters that determine linear turbulence stability, including the normal curvature and local magnetic shear, are shown to be only weakly modified by applied 3D fields in the DIII-D tokamak. These ideal MHD effects are therefore not sufficient to explain the observed changes to fluctuations and transport. Using the M3D-C1 code to model the 3D equilibrium, density is shown to be redistributed on flux surfaces in the pedestal when resistive two fluid effects are included, while islands are screened by rotation in this region. The redistribution of density results in density and pressure gradient scale lengths that vary within pedestal flux surfaces between different helically localized flux tubes. This would produce different drive terms for trapped electron mode and kinetic ballooning mode turbulence, the latter of which is expected to be the limiting factor for pedestal pressure gradients in DIII-D.
引用
收藏
页数:10
相关论文
共 30 条
[1]   A model for microinstability destabilization and enhanced transport in the presence of shielded 3D magnetic perturbations [J].
Bird, T. M. ;
Hegna, C. C. .
NUCLEAR FUSION, 2013, 53 (01)
[3]   Magnetic-flutter-induced pedestal plasma transport [J].
Callen, J. D. ;
Hegna, C. C. ;
Cole, A. J. .
NUCLEAR FUSION, 2013, 53 (11)
[4]   Edge stability and transport control with resonant magnetic perturbations in collisionless tokamak plasmas [J].
Evans, Todd E. ;
Moyer, Richard A. ;
Burrell, Keith H. ;
Fenstermacher, Max E. ;
Joseph, Ilon ;
Leonard, Anthony W. ;
Osborne, Thomas H. ;
Porter, Gary D. ;
Schaffer, Michael J. ;
Snyder, Philip B. ;
Thomas, Paul R. ;
Watkins, Jonathan G. ;
West, William P. .
NATURE PHYSICS, 2006, 2 (06) :419-423
[5]   Calculations of two-fluid linear response to non-axisymmetric fields in tokamaks [J].
Ferraro, N. M. .
PHYSICS OF PLASMAS, 2012, 19 (05)
[6]   Local three-dimensional magnetostatic equilibria [J].
Hegna, CC .
PHYSICS OF PLASMAS, 2000, 7 (10) :3921-3928
[7]   3-DIMENSIONAL FREE-BOUNDARY CALCULATIONS USING A SPECTRAL GREENS-FUNCTION METHOD [J].
HIRSHMAN, SP ;
VANRIJ, WI .
COMPUTER PHYSICS COMMUNICATIONS, 1986, 43 (01) :143-155
[8]   Effect of resonant magnetic perturbations on microturbulence in DIII-D pedestal [J].
Holod, I. ;
Lin, Z. ;
Taimourzadeh, S. ;
Nazikian, R. ;
Spong, D. ;
Wingen, A. .
NUCLEAR FUSION, 2017, 57 (01)
[9]   Drift waves and transport [J].
Horton, W .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :735-778
[10]   Experimental tests of linear and nonlinear three-dimensional equilibrium models in DIII-D [J].
King, J. D. ;
Strait, E. J. ;
Lazerson, S. A. ;
Ferraro, N. M. ;
Logan, N. C. ;
Haskey, S. R. ;
Park, J. -K. ;
Hanson, J. M. ;
Lanctot, M. J. ;
Liu, Yueqiang ;
Nazikian, R. ;
Okabayashi, M. ;
Paz-Soldan, C. ;
Shiraki, D. ;
Turnbull, A. D. .
PHYSICS OF PLASMAS, 2015, 22 (07)