Hydrogen production from ethanol decomposition by pulsed discharge with needle-net configurations

被引:28
作者
Xin, Yanbin [1 ]
Sun, Bing [1 ]
Zhu, Xiaomei [1 ]
Yan, Zhiyu [1 ]
Zhao, Xiaotong [1 ]
Sun, Xiaohang [2 ]
机构
[1] Coll Environm Sci & Engn Dalian Maritime Univ, Dalian 116026, Peoples R China
[2] North Carolina State Univ, Dept Forest Biomat, Coll Nat Resources, 27695 Faucette Dr, Raleigh, NC USA
基金
中国国家自然科学基金;
关键词
Hydrogen production; Needle-net configurations; Pulsed discharge; Ethanol solution; Nano carbon particles; IN-LIQUID PLASMA; NONTHERMAL PLASMA; AQUEOUS-SOLUTION; METHANE HYDRATE; GAS-PRODUCTION; ARC-DISCHARGE; BIO-ETHANOL; REACTOR; WATER; HYDROCARBONS;
D O I
10.1016/j.apenergy.2017.08.055
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Hydrogen produced from ethanol solution by pulsed discharge was investigated in this work. With needle-net configurations, hydrogen can be easily exported from the plasma reactor thereby preventing hydrogen from consuming by the oxidizing active substances generated from pulsed discharge. Both flow rate and percentage concentration of hydrogen were enhanced with the increase of energy density, but not much change with the increase of discharge time. Flow rate, percentage concentration, and energy consumption of hydrogen were achieved about 800 mL/min, 73.5%, and 0.9 kWh/m(3) H-2 respectively with energy density of 6.4 J/L. All products were analyzed, which were divided into main and secondary products guiding the mechanism analysis of hydrogen production. The main products contain H-2, CO, CH3OH, and the secondary products include C2H2, CO2, macromolecular compounds, nano carbon particles. The high hydrogen yield, emerged nano carbon, low ethanol and energy consumption make this method possess bright prospect in hydrogen production.
引用
收藏
页码:126 / 133
页数:8
相关论文
共 49 条
  • [1] Production of Hydrogen-Rich Synthesis Gas by Pulsed Atmospheric Plasma Submerged in Mixture of Water with Ethanol
    Bardos, L.
    Barankova, H.
    Bardos, A.
    [J]. PLASMA CHEMISTRY AND PLASMA PROCESSING, 2017, 37 (01) : 115 - 123
  • [2] Plasma-liquid interactions: a review and roadmap
    Bruggeman, P. J.
    Kushner, M. J.
    Locke, B. R.
    Gardeniers, J. G. E.
    Graham, W. G.
    Graves, D. B.
    Hofman-Caris, R. C. H. M.
    Maric, D.
    Reid, J. P.
    Ceriani, E.
    Rivas, D. Fernandez
    Foster, J. E.
    Garrick, S. C.
    Gorbanev, Y.
    Hamaguchi, S.
    Iza, F.
    Jablonowski, H.
    Klimova, E.
    Kolb, J.
    Krcma, F.
    Lukes, P.
    Machala, Z.
    Marinov, I.
    Mariotti, D.
    Thagard, S. Mededovic
    Minakata, D.
    Neyts, E. C.
    Pawlat, J.
    Petrovic, Z. Lj
    Pflieger, R.
    Reuter, S.
    Schram, D. C.
    Schroter, S.
    Shiraiwa, M.
    Tarabova, B.
    Tsai, P. A.
    Verlet, J. R. R.
    von Woedtke, T.
    Wilson, K. R.
    Yasui, K.
    Zvereva, G.
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (05)
  • [3] Non-thermal plasmas in and in contact with liquids
    Bruggeman, Peter
    Leys, Christophe
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (05)
  • [4] Hydrogen production from methanol reforming in microwave "tornado"-type plasma
    Bundaleska, N.
    Tsyganov, D.
    Saavedra, R.
    Tatarova, E.
    Dias, F. M.
    Ferreira, C. M.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (22) : 9145 - 9157
  • [5] CRITICAL-REVIEW OF RATE CONSTANTS FOR REACTIONS OF HYDRATED ELECTRONS, HYDROGEN-ATOMS AND HYDROXYL RADICALS (.OH/.O-) IN AQUEOUS-SOLUTION
    BUXTON, GV
    GREENSTOCK, CL
    HELMAN, WP
    ROSS, AB
    [J]. JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1988, 17 (02) : 513 - 886
  • [6] Plasma-Assisted Reforming of Ethanol in Dynamic Plasma-Liquid System: Experiments and Modeling
    Chernyak, Valeriy Ya.
    Olszewski, Sergej V.
    Yukhymenko, VitalijV.
    Solomenko, Elena V.
    Prysiazhnevych, Iryna V.
    Naumov, Vadym V.
    Levko, Dmitry S.
    Shchedrin, Anatolij I.
    Ryabtsev, Andriy V.
    Demchina, Valentina P.
    Kudryavtsev, Vladimir S.
    Martysh, Eugene V.
    Verovchuck, Maxim A.
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2008, 36 (06) : 2933 - 2939
  • [7] Enhanced hydrogen production using steam plasma processing of biomass: Experimental apparatus and procedure
    Diaz, Gerardo
    Sharma, Neeraj
    Leal-Quiros, Edbertho
    Munoz-Hernandez, Andres
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (05) : 2091 - 2098
  • [8] Plasma reforming of bio-ethanol for hydrogen rich gas production
    Du, ChangMing
    Mo, JianMin
    Tang, Jun
    Huang, DongWei
    Mo, ZhiXing
    Wang, QingKun
    Ma, ShiZhe
    Chen, ZhongJie
    [J]. APPLIED ENERGY, 2014, 133 : 70 - 79
  • [9] Hydrogen production by steam-oxidative reforming of bio-ethanol assisted by Laval nozzle arc discharge
    Du, Changming
    Li, Hongxia
    Zhang, Lu
    Wang, Jing
    Huang, Dongwei
    Xiao, Mudan
    Cai, Jiawen
    Chen, Yabin
    Yan, Hanlu
    Xiong, Ya
    Xiong, Yi
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (10) : 8318 - 8329
  • [10] Determination of low-carbon alcohols, aldehydes and ketones in aqueous products of Fischer-Tropsch synthesis by gas chromatography
    Gai Qingqing
    Wu Peng
    Shi Yulin
    Bai Yu
    Long Yinhua
    [J]. CHINESE JOURNAL OF CHROMATOGRAPHY, 2015, 33 (01) : 90 - 95