David versus goliath: ACE2-Fc receptor traps as potential SARS-CoV-2 inhibitors

被引:6
作者
Alfaleh, Mohamed A. [1 ,2 ]
Zawawi, Ayat [2 ,3 ]
Al-Amri, Sawsan S. [2 ]
Hashem, Anwar M. [2 ,4 ]
机构
[1] King Abdulaziz Univ, Fac Pharm, Dept Pharmaceut, Jeddah, Saudi Arabia
[2] King Abdulaziz Univ, King Fahd Med Res Ctr, Vaccines & Immunotherapy Unit, Jeddah, Saudi Arabia
[3] King Abdulaziz Univ, Fac Appl Med Sci, Dept Med Lab Sci, Jeddah, Saudi Arabia
[4] King Abdulaziz Univ, Fac Med, Dept Med Microbiol & Parasitol, Jeddah, Saudi Arabia
关键词
ACE2; affinity maturation; COVID-19; immunoadhesins; receptor traps; SARS coronavirus 2; CONVERTING ENZYME 2; FUSION PROTEINS; SPIKE PROTEIN; SOLUBLE ACE2; IN-VITRO; ANGIOTENSIN; FCRN; IMMUNOGENICITY; TRANSPORT; COVID-19;
D O I
10.1080/19420862.2022.2057832
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Anti-SARS-CoV-2 monoclonal antibodies and vaccines have shown improvement in lowering viral burden and hospitalization. However, emerging SARS-CoV-2 variants contain neutralizing antibody-escape mutations. Therefore, several reports have suggested the administration of recombinant angiotensin-converting enzyme 2 (rACE2) as a soluble receptor trap to block SARS-CoV-2 infection and limit viral escape potential. Several strategies have been implemented to enhance the efficacy of rACE2 as a therapeutic agent. Fc fusions have been used to improve pharmacokinetics and boost the affinity and avidity of ACE2 decoys for the virus spike protein. Furthermore, the intrinsic catalytic activity of ACE2 can be eliminated by introducing point mutations on the catalytic site of ACE2 to obtain an exclusive antiviral activity. This review summarizes different evolution platforms that have been used to enhance ACE2-Fc (i.e., immunoadhesins) as potential therapeutics for the current pandemic or future outbreaks of SARS-associated betacoronaviruses.
引用
收藏
页数:11
相关论文
共 113 条
[1]   IgG4 breaking the rules [J].
Aalberse, RC ;
Schuurman, J .
IMMUNOLOGY, 2002, 105 (01) :9-19
[2]   Phage Display Derived Monoclonal Antibodies: From Bench to Bedside [J].
Alfaleh, Mohamed A. ;
Alsaab, Hashem O. ;
Mahmoud, Ahmad Bakur ;
Alkayyal, Almohanad A. ;
Jones, Martina L. ;
Mahler, Stephen M. ;
Hashem, Anwar M. .
FRONTIERS IN IMMUNOLOGY, 2020, 11
[3]   Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion [J].
Benton, Donald J. ;
Wrobel, Antoni G. ;
Xu, Pengqi ;
Roustan, Chloe ;
Martin, Stephen R. ;
Rosenthal, Peter B. ;
Skehel, John J. ;
Gamblin, Steven J. .
NATURE, 2020, 588 (7837) :327-330
[4]   SARS-CoV-2 neutralizing human recombinant antibodies selected from pre-pandemic healthy donors binding at RBD-ACE2 interface [J].
Bertoglio, Federico ;
Meier, Doris ;
Langreder, Nora ;
Steinke, Stephan ;
Rand, Ulfert ;
Simonelli, Luca ;
Heine, Philip Alexander ;
Ballmann, Rico ;
Schneider, Kai-Thomas ;
Roth, Kristian Daniel Ralph ;
Ruschig, Maximilian ;
Riese, Peggy ;
Eschke, Kathrin ;
Kim, Yeonsu ;
Schaeckermann, Dorina ;
Pedotti, Mattia ;
Kuhn, Philipp ;
Zock-Emmenthal, Susanne ;
Woehrle, Johannes ;
Kilb, Normann ;
Herz, Tobias ;
Becker, Marlies ;
Grasshoff, Martina ;
Wenzel, Esther Veronika ;
Russo, Giulio ;
Kroeger, Andrea ;
Brunotte, Linda ;
Ludwig, Stephan ;
Fuehner, Viola ;
Kraemer, Stefan Daniel ;
Duebel, Stefan ;
Varani, Luca ;
Roth, Gunter ;
Cicin-Sain, Luka ;
Schubert, Maren ;
Hust, Michael .
NATURE COMMUNICATIONS, 2021, 12 (01)
[5]   Pulmonary delivery of an erythropoietin Fc fusion protein in non-human primates through an immunoglobulin transport pathway [J].
Bitonti, AJ ;
Dumont, JA ;
Low, SC ;
Peters, RT ;
Kropp, KE ;
Palombella, VJ ;
Stattel, JM ;
Lu, YC ;
Tan, CA ;
Song, JJ ;
Garcia, AM ;
Simister, NE ;
Spiekermann, GM ;
Lencer, WI ;
Blumberg, RS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (26) :9763-9768
[6]   Bi-paratopic and multivalent VH domains block ACE2 binding and neutralize SARS-CoV-2 [J].
Bracken, Colton J. ;
Lim, Shion A. ;
Solomon, Paige ;
Rettko, Nicholas J. ;
Nguyen, Duy P. ;
Zha, Beth Shoshana ;
Schaefer, Kaitlin ;
Byrnes, James R. ;
Zhou, Jie ;
Lui, Irene ;
Liu, Jia ;
Pance, Katarina ;
Zhou, Xin X. ;
Leung, Kevin K. ;
Wells, James A. .
NATURE CHEMICAL BIOLOGY, 2021, 17 (01) :113-121
[7]  
Capraz T, 2021, ELIFE, V10, DOI [10.7554/eLife.73641, 10.7554/eLife.73641.sa0, 10.7554/eLife.73641.sa1, 10.7554/eLife.73641.sa2]
[8]   Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein [J].
Casalino, Lorenzo ;
Gaieb, Zied ;
Goldsmith, Jory A. ;
Hjorth, Christy K. ;
Dommer, Abigail C. ;
Harbison, Aoife M. ;
Fogarty, Carl A. ;
Barros, Emilia P. ;
Taylor, Bryn C. ;
McLellan, Jason S. ;
Fadda, Elisa ;
Amaro, Rommie E. .
ACS CENTRAL SCIENCE, 2020, 6 (10) :1722-1734
[9]  
Chan KK, 2021, SCI ADV, V7, DOI [10.1126/sciadv.abf1738, 10.1101/2020.10.18.344622]
[10]   Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2 [J].
Chan, Kui K. ;
Dorosky, Danielle ;
Sharma, Preeti ;
Abbasi, Shawn A. ;
Dye, John M. ;
Kranz, David M. ;
Herbert, Andrew S. ;
Procko, Erik .
SCIENCE, 2020, 369 (6508) :1261-+