Symmetries and exact solutions of the nondiagonal Einstein-Rosen metrics

被引:5
作者
Goyal, N. [1 ]
Gupta, R. K. [1 ]
机构
[1] Thapar Univ, Sch Math & Comp Applicat, Patiala 147004, Punjab, India
关键词
GRAVITATIONAL-WAVES; GENERAL-RELATIVITY; FIELD-EQUATIONS;
D O I
10.1088/0031-8949/85/01/015004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We seek exact solutions of the nondiagonal Einstein-Rosen metrics. The method of Lie symmetry of differential equations is utilized to obtain new exact solutions of Einstein vacuum equations obtained from the nondiagonal Einstein-Rosen metric. Four cases arise depending on the nature of the Lie symmetry generator. In all cases, we find reductions in terms of ordinary differential equations and exact solutions of the nonlinear system of partial differential equations (PDEs) are derived. For this purpose, first we check the Painleve property and then corresponding to the nonlinear system of PDEs, symmetries and exact solutions are obtained.
引用
收藏
页数:6
相关论文
共 23 条
[1]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :715-721
[2]   Isovector fields and similarity solutions of Einstein vacuum equations for rotating fields [J].
Attallah, S. K. ;
El-Sabbagh, M. F. ;
Ali, A. T. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2007, 12 (07) :1153-1161
[3]   On certain classes of exact solutions of Einstein equations for rotating fields in conventional and nonconventional form [J].
Bhutani, OP ;
Singh, K ;
Kalra, DK .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2003, 41 (07) :769-786
[4]   GRAVITATIONAL WAVES IN GENERAL RELATIVITY .3. EXACT PLANE WAVES [J].
BONDI, H ;
PIRANI, FAE ;
ROBINSON, I .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1959, 251 (1267) :519-533
[5]  
Eddington AS., 1924, The Mathematical Theory of Relativity
[6]   On gravitational waves [J].
Einstein, A ;
Rosen, N .
JOURNAL OF THE FRANKLIN INSTITUTE, 1937, 223 :0043-0054
[7]   METHOD FOR GENERATING NEW SOLUTIONS OF EINSTEINS EQUATION .2. [J].
GEROCH, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (03) :394-&
[8]   Symmetry analysis and some exact solutions of cylindrically symmetric null fields in general relativity [J].
Gupta, R. K. ;
Singh, K. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (11) :4189-4196
[9]  
Gupta Y K, 2010, ADV STUD THEOR PHYS, V4, P449
[10]  
Islam J N, 1985, Rotating fields in general relativity