Real structures on moduli spaces of Higgs bundles

被引:35
作者
Baraglia, David [1 ]
Schaposnik, Laura P. [2 ]
机构
[1] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
K-THEORY; DUALITY; SYSTEMS; CURVE; PAIRS;
D O I
10.4310/ATMP.2016.v20.n3.a2
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct triples of commuting real structures on the moduli space of Higgs bundles, whose fixed loci are branes of type (B, A, A), (A, B, A) and (A, A, B). We study the real points through the associated spectral data and describe the topological invariants involved using KO, KR and equivariant K-theory.
引用
收藏
页码:525 / 551
页数:27
相关论文
共 28 条
[1]  
Atiyah M., 1971, Ann. Sci. Ecole Norm. Sup., V4, P47
[2]   K-THEORY AND REALITY [J].
ATIYAH, MF .
QUARTERLY JOURNAL OF MATHEMATICS, 1966, 17 (68) :367-&
[3]  
Baraglia D., 2013, ARXIV13054638
[4]  
BEAUVILLE A, 1989, J REINE ANGEW MATH, V398, P169
[5]  
Biswas I., 2012, ARXIV12095814
[6]   Connections and Higgs fields on a principal bundle [J].
Biswas, Indranil ;
Gomez, Tomas L. .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2008, 33 (01) :19-46
[7]   The moduli space of stable vector bundles over a real algebraic curve [J].
Biswas, Indranil ;
Huisman, Johannes ;
Hurtubise, Jacques .
MATHEMATISCHE ANNALEN, 2010, 347 (01) :201-233
[8]   Relative Hitchin-Kobayashi correspondences for principal pairs [J].
Bradlow, SB ;
García-Prada, O ;
Riera, IMI .
QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 :171-208
[9]  
CORLETTE K, 1988, J DIFFER GEOM, V28, P361
[10]   Langlands duality for Hitchin systems [J].
Donagi, R. ;
Pantev, T. .
INVENTIONES MATHEMATICAE, 2012, 189 (03) :653-735