Robust stabilization criteria of a general form of fractional-order controllers for interval fractional-order plants with complex uncertain parameters

被引:9
|
作者
Ghorbani, Majid [1 ]
机构
[1] Tallinn Univ Technol, Dept Comp Syst, Tallinn, Estonia
关键词
Interval uncertainty; Robust stability analysis; Fractional -order systems; Fractional -order controllers; DELAY SYSTEMS; STABILITY;
D O I
10.1016/j.isatra.2022.02.014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the problem of robust stabilization of interval fractional-order plants with complex uncertain parameters by using fractional-order controllers. An interval fractional-order plant with complex uncertain parameters means that the coefficients of the numerator and denominator of the plant are all uncertain and may be complex numbers and lie in specified intervals. At first, by using a graphical approach, necessary and sufficient conditions are presented for the stabilization of the fractional-order plant containing complex coefficients. Then, by using some interesting geometric features of convex polygons, a robust stability checking function is presented for the stabilization. Also, an upper frequency bound is introduced to reduce the computational burden. Finally, six examples are provided to illustrate the results.(c) 2022 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:140 / 151
页数:12
相关论文
共 50 条
  • [1] Robust stabilization criterion of fractional-order controllers for interval fractional-order plants
    Gao, Zhe
    AUTOMATICA, 2015, 61 : 9 - 17
  • [2] Robust Stability Analysis of Interval Fractional-Order Plants with Interval Time Delay and General Form of Fractional-Order Controllers
    Ghorbani, Majid
    Tavakoli-Kakhki, Mahsan
    Tepljakov, Aleksei
    Petlenkov, Eduard
    Farnam, Arash
    Crevecoeur, Guillaume
    IEEE Control Systems Letters, 2022, 6 : 1268 - 1273
  • [3] Robust Stability Analysis of Interval Fractional-Order Plants With Interval Time Delay and General Form of Fractional-Order Controllers
    Ghorbani, Majid
    Tavakoli-Kakhki, Mahsan
    Tepljakov, Aleksei
    Petlenkov, Eduard
    Farnam, Arash
    Crevecoeur, Guillaume
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 1268 - 1273
  • [4] Robust stabilization of interval fractional-order plants with one time-delay by fractional-order controllers
    Gao, Zhe
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (02): : 767 - 786
  • [5] Stabilization Criterion of Fractional-Order PDμ Controllers for Interval Fractional-Order Plants with One Fractional-Order Term
    Gao, Zhe
    Cai, Xiaowu
    Zhai, Lirong
    Liu, Ting
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 10424 - 10430
  • [6] Robust Stabilization of Fractional-Order Systems with Interval Uncertainties via Fractional-Order Controllers
    Saleh Sayyad Delshad
    MohammadMostafa Asheghan
    Mohammadtaghi Hamidi Beheshti
    Advances in Difference Equations, 2010
  • [7] Robust Stabilization of Fractional-Order Systems with Interval Uncertainties via Fractional-Order Controllers
    Delshad, Saleh Sayyad
    Asheghan, Mohammad Mostafa
    Beheshti, Mohammadtaghi Hamidi
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [8] Robust stabilization of interval fractional-order plants with an interval time delay by fractional-order proportional integral derivative controllers
    Ghorbani, Majid
    Tepljakov, Aleksei
    Petlenkov, Eduard
    IET CONTROL THEORY AND APPLICATIONS, 2024, 18 (05): : 614 - 625
  • [9] Low-Order Representation of Robust Fractional-Order Controllers for Fractional-Order Interval Plants
    Mihaly, Vlad
    Susca, Mircea
    Dobra, Petru
    2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,
  • [10] An analytical method on the stabilization of fractional-order plants with one fractional-order term and interval uncertainties using fractional-order PIλ Dμ controllers
    Gao, Zhe
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2018, 40 (15) : 4133 - 4142