Infinitude of k-Lehmer numbers which are not Carmichael

被引:1
作者
McNew, Nathan [1 ]
Wright, Thomas [2 ]
机构
[1] Towson Univ, Dept Math, 7800 York Rd, Towson, MD 21252 USA
[2] Wofford Coll, Dept Math, 429 N Church St, Spartanburg, SC 29302 USA
关键词
Lehmer numbers; Carmichael numbers; Euler totient function; primes in tuples;
D O I
10.1142/S1793042116501153
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that there are infinitely many n's for which rad(phi(n))vertical bar n -1 but n is not a Carmichael number. Additionally, we prove that for any k >= 3, there exist infinitely many n's such that phi(n)vertical bar(n-1)(k) but phi(n) inverted iota (n-1)(k-1). The constructions that we consider here are generalizations of Carmichael and Lehmer numbers, respectively, that were first formulated by Grau and Oller-Marcen.
引用
收藏
页码:1863 / 1869
页数:7
相关论文
共 16 条
[1]   THERE ARE INFINITELY MANY CARMICHAEL NUMBERS [J].
ALFORD, WR ;
GRANVILLE, A ;
POMERANCE, C .
ANNALS OF MATHEMATICS, 1994, 139 (03) :703-722
[2]  
[Anonymous], B AM MATH SOC
[3]  
Chernick J., 1939, B AM MATH SOC, V45, P269, DOI 10.1090/S0002-9904-1939-06953-X
[4]  
COHEN GL, 1980, NIEUW ARCH WISK, V28, P177
[5]  
Grau J. M., 2012, INTEGERS, V12, P1081
[6]   Watt's mean value theorem and Carmichael numbers [J].
Harman, Glyn .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (02) :241-248
[7]  
Korselt A., 1899, INTERMEDIAIRE MATH, V3, P142
[8]  
Lehmer D., 1932, Bull. Amer. Math. Soc., V38, P745
[9]  
Luca F., 2011, Bol. Soc. Mat. Mexicana, V17, P13
[10]  
Maynard J., 2014, ARXIV14052593