Dose-response and ghosting effects of an amorphous silicon electronic portal imaging device

被引:137
作者
McDermott, LN [1 ]
Louwe, RJW [1 ]
Sonke, JJ [1 ]
van Herk, MB [1 ]
Mijnheer, BJ [1 ]
机构
[1] Antoni Van Leeuwenhoek Hosp, Netherlands Canc Inst, Dept Radiotherapy, NL-1066 CX Amsterdam, Netherlands
关键词
portal dosimetry; amorphous silicon EPID; radiation dosimetry; dose response; flat-panel imagers;
D O I
10.1118/1.1637969
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The purpose of this study was to investigate the dose-response characteristics, including ghosting effects, of an amorphous silicon-based electronic portal imaging device (a-Si EPID) under clinical conditions. EPID measurements were performed using one prototype and two commercial a-Si detectors on two linear accelerators: one with 4 and 6 MV and the other with 8 and 18 MV x-ray beams. First, the EPID signal and ionization chamber measurements in a mini-phantom were compared to determine the amount of buildup required for EPID dosimetry. Subsequently, EPID signal characteristics were studied as a function of dose per pulse, pulse repetition frequency (PRF) and total dose, as well as the effects of ghosting. There was an over-response of the EPID signal compared to the ionization chamber of up to 18%, with no additional buildup layer over an air gap range of 10 to 60 cm. The addition of a 2.5 mm thick copper plate sufficiently reduced this over-response to within 1% at clinically relevant patient-detector air gaps (> 40 cm). The response of the EPIDs varied by up to 8% over a large range of dose per pulse values, PRF values and number of monitor units. The EPID response showed an under-response at shorter beam times due to ghosting effects, which depended on the number of exposure frames for a fixed frame acquisition rate. With an appropriate build-up layer and corrections for dose per pulse, PRF and ghosting, the variation in the a-Si EPID response can be reduced to well within +/-1%. (C) 2004 American Association of Physicists in Medicine.
引用
收藏
页码:285 / 295
页数:11
相关论文
共 32 条
[1]   Megavoltage imaging with a large-area, flat-panel, amorphous silicon imager [J].
Antonuk, LE ;
Yorkston, J ;
Huang, WD ;
Sandler, H ;
Siewerdsen, JH ;
ElMohri, Y .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1996, 36 (03) :661-672
[2]   Initial performance evaluation of an indirect-detection, active matrix flat-panel imager (AMFPI) prototype for megavoltage imaging [J].
Antonuk, LE ;
El-Mohri, Y ;
Huang, WD ;
Jee, KW ;
Siewerdsen, JH ;
Maolinbay, M ;
Scarpine, VE ;
Sandler, H ;
Yorkston, J .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1998, 42 (02) :437-454
[3]  
ANTONUK LE, 1998, AAPM MED PHYSICS MON, V24, P371
[4]   First clinical tests using a liquid-filled electronic portal imaging device and a convolution model for the verification of the midplane dose [J].
Boellaard, R ;
van Herk, M ;
Uiterwaal, H ;
Mijnheer, B .
RADIOTHERAPY AND ONCOLOGY, 1998, 47 (03) :303-312
[5]   New method to obtain the midplane dose using portal in vivo dosimetry [J].
Boellaard, R ;
Essers, M ;
van Herk, M ;
Mijnheer, BJ .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1998, 41 (02) :465-474
[6]   The dose response relationship of a liquid-filled electronic portal imaging device [J].
Boellaard, R ;
vanHerk, M ;
Mijnheer, BJ .
MEDICAL PHYSICS, 1996, 23 (09) :1601-1611
[7]   Characterization of a high-elbow, fluoroscopic electronic portal imaging device for portal dosimetry [J].
de Boer, JCJ ;
Heijmen, BJM ;
Pasma, KL ;
Visser, AG .
PHYSICS IN MEDICINE AND BIOLOGY, 2000, 45 (01) :197-216
[8]   Relative dosimetry using active matrix flat-panel imager (AMFPI) technology [J].
El-Mohri, Y ;
Antonuk, LE ;
Yorkston, J ;
Jee, KW ;
Maolinbay, M ;
Lam, KL ;
Siewerdsen, JH .
MEDICAL PHYSICS, 1999, 26 (08) :1530-1541
[9]   Transmission dosimetry with a liquid-filled electronic portal imaging device [J].
Essers, M ;
Boellaard, R ;
vanHerk, M ;
Lanson, H ;
Mijnheer, B .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1996, 34 (04) :931-941
[10]   Dosimetric properties of an amorphous silicon electronic portal imaging device for verification of dynamic intensity modulated radiation therapy [J].
Greer, PB ;
Popescu, CC .
MEDICAL PHYSICS, 2003, 30 (07) :1618-1627