Higher-Order Turbulence Statistics in the Earth's Magnetosheath and the Solar Wind Using Magnetospheric Multiscale Observations

被引:64
作者
Chhiber, R. [1 ]
Chasapis, A. [1 ]
Bandyopadhyay, R. [1 ]
Parashar, T. N. [1 ]
Matthaeus, W. H. [1 ]
Maruca, B. A. [1 ]
Moore, T. E. [2 ]
Burch, J. L. [3 ]
Torbert, R. B. [4 ]
Russell, C. T. [5 ]
Le Contel, O. [6 ]
Argall, M. R. [4 ]
Fischer, D. [7 ]
Mirioni, L. [6 ]
Strangeway, R. J. [5 ]
Pollock, C. J. [8 ]
Giles, B. L. [2 ]
Gershman, D. J. [2 ]
机构
[1] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[3] Southwest Res Inst, San Antonio, TX USA
[4] Univ New Hampshire, Durham, NH 03824 USA
[5] Univ Calif Los Angeles, Los Angeles, CA USA
[6] Univ Paris Sud, Observ Paris, Sorbonne Univ, CNRS,Ecole Polytech, Paris, France
[7] Austrian Acad Sci, Space Res Inst, Graz, Austria
[8] Denali Sci, Fairbanks, AK USA
关键词
solar wind; magnetosheath; turbulence; plasma turbulence; intermittency; multispacecraft technique; CASCADE; SCALES;
D O I
10.1029/2018JA025768
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
High-resolution multispacecraft magnetic field measurements from the Magnetospheric Multiscale mission's flux-gate magnetometer are employed to examine statistical properties of plasma turbulence in the terrestrial magnetosheath and in the solar wind. Quantities examined include wave number spectra; structure functions of order two, four, and six; probability density functions of increments; and scale-dependent kurtoses of the magnetic field. We evaluate the Taylor frozen-in approximation by comparing single-spacecraft time series analysis with direct multispacecraft measurements, including evidence based on comparison of probability distribution functions. The statistics studied span spatial scales from the inertial range down to proton and electron scales. We find agreement of spectral estimates using three different methods, and evidence of intermittent turbulence in both magnetosheath and solar wind; however, evidence for subproton-scale coherent structures, seen in the magnetosheath, is not found in the solar wind.
引用
收藏
页码:9941 / 9954
页数:14
相关论文
共 55 条
[1]   Solar wind vs magnetosheath turbulence and Alfven vortices [J].
Alexandrova, O. .
NONLINEAR PROCESSES IN GEOPHYSICS, 2008, 15 (01) :95-108
[2]   Small-scale energy cascade of the solar wind turbulence [J].
Alexandrova, O. ;
Carbone, V. ;
Veltri, P. ;
Sorriso-Valvo, L. .
ASTROPHYSICAL JOURNAL, 2008, 674 (02) :1153-1157
[3]   Solar Wind Turbulence and the Role of Ion Instabilities [J].
Alexandrova, O. ;
Chen, C. H. K. ;
Sorriso-Valvo, L. ;
Horbury, T. S. ;
Bale, S. D. .
SPACE SCIENCE REVIEWS, 2013, 178 (2-4) :101-139
[4]  
[Anonymous], 1971, Random functions and turbulence
[5]  
[Anonymous], 1953, The theory of homogeneous turbulence
[6]  
Argall M. R., 2018, FLUXGATE SEARCHCOIL
[7]   Incompressive Energy Transfer in the Earth's Magnetosheath: Magnetospheric Multiscale Observations [J].
Bandyopadhyay, Riddhi ;
Chasapis, A. ;
Chhiber, R. ;
Parashar, T. N. ;
Matthaeus, W. H. ;
Shay, M. A. ;
Maruca, B. A. ;
Burch, J. L. ;
Moore, T. E. ;
Pollock, C. J. ;
Giles, B. L. ;
Paterson, W. R. ;
Dorelli, J. ;
Gershman, D. J. ;
Torbert, R. B. ;
Russell, C. T. ;
Strangeway, R. J. .
ASTROPHYSICAL JOURNAL, 2018, 866 (02)
[8]   Solar Wind Turbulence Studies Using MMS Fast Plasma Investigation Data [J].
Bandyopadhyay, Riddhi ;
Chasapis, A. ;
Chhiber, R. ;
Parashar, T. N. ;
Maruca, B. A. ;
Matthaeus, W. H. ;
Schwartz, S. J. ;
Eriksson, S. ;
Le Contel, O. ;
Breuillard, H. ;
Burch, J. L. ;
Moore, T. E. ;
Pollock, C. J. ;
Giles, B. L. ;
Paterson, W. R. ;
Dorelli, J. ;
Gershman, D. J. ;
Torbert, R. B. ;
Russell, C. T. ;
Strangeway, R. J. .
ASTROPHYSICAL JOURNAL, 2018, 866 (02)
[9]  
Biskamp D., 2003, MAGNETOHYDRODYNAMICS, P310
[10]   SPECTRAL BREAKS OF ALFVENIC TURBULENCE IN A COLLISIONLESS PLASMA [J].
Boldyrev, Stanislav ;
Chen, Christopher H. K. ;
Xia, Qian ;
Zhdankin, Vladimir .
ASTROPHYSICAL JOURNAL, 2015, 806 (02)