On linear and nonlinear fourth-order eigenvalue problems with indefinite weight

被引:16
作者
Ma, Ruyun [1 ]
Gao, Chenghua [1 ]
Han, Xiaoling [1 ]
机构
[1] NW Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
关键词
Indefinite weight function; Principal eigenvalue; Bifurcation; Positive solution; BOUNDARY-VALUE-PROBLEMS; POSITIVE SOLUTIONS; EXISTENCE; MULTIPLICITY; EQUATIONS;
D O I
10.1016/j.na.2011.07.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine the principal eigenvalues of the linear indefinite weight problem u '''' (x) = rg(x)u(x), x is an element of (0,1), u(0) = u(1) - u '' (1) = 0. Moreover, we investigate the existence of positive solutions for the corresponding nonlinear indefinite weight problem, where g : [ 0, 1] -> R is a continuous function which attains both positive and negative values, f is an element of C(R, R), and r is a parameter. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6965 / 6969
页数:5
相关论文
共 24 条
[1]   Positive mountain pass solutions for a semilinear elliptic equation with a sign-changing weight function [J].
Afrouzi, GA ;
Brown, KJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (03) :409-416
[2]   On principal eigenvalues for boundary value problems with indefinite weight and Robin boundary conditions [J].
Afrouzi, GA ;
Brown, KJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (01) :125-130
[3]  
Agarwal R., 1989, Differ. Integr. Equ., V2, P91
[4]  
[Anonymous], 1990, Differential Integral Equations
[5]  
[Anonymous], 1980, Comm. Partial Differential Equations, DOI DOI 10.1080/03605308008820162
[6]   On positive solutions of some nonlinear fourth-order beam equations [J].
Bai, ZB ;
Wang, HY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 270 (02) :357-368
[7]  
BOCHER P, 1914, SMALLEST CHARACTERIS
[8]   Local and global bifurcation results for a semilinear boundary value problem [J].
Brown, K. J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 239 (02) :296-310
[9]   On the existence and multiplicity of positive solutions for some indefinite nonlinear eigenvalue problem [J].
Delgado, M ;
Suárez, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (06) :1721-1728
[10]   EIGENVALUE PROBLEMS FOR EQUATION LY + LAMBDAP(X) Y = 0 [J].
ELIAS, U .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 29 (01) :28-57