The New Empirical Path Loss Model for Line of Sight Propagation in HSR Communication System Using Optimization Technique

被引:2
作者
Lukman, Selvi [1 ]
Nazaruddin, Yul Yunazwin [2 ]
Ai, Bo [3 ,4 ]
Joelianto, Endra [2 ]
机构
[1] Inst Teknol Bandung, Phys Engn Dept, Bandung 40132, Indonesia
[2] Inst Technol Bandung, Fac Ind Technol, Instrumentat & Control Res Grp, Bandung 40132, Indonesia
[3] Beijing Jiaotong Univ, State Key Lab Rail Traff Control, Beijing 100044, Peoples R China
[4] Beijing Jiaotong Univ, Res Inst Modern Telecommun, Beijing 100044, Peoples R China
关键词
Propagation losses; Predictive models; Artificial neural networks; Loss measurement; Analytical models; Optimization; 5G mobile communication; Path loss model; line-of-sight (LOS); HSR communication system; optimization technique; LOSS PREDICTION;
D O I
10.1109/LWC.2022.3182117
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The study of path loss becomes paramount for the deployment of HSR base station infrastructure. In this letter, a new empirical path loss model for Line-of-Sight (LOS) propagation is constructed. The optimization technique is utilized to validate the model which in this term the unknown parameter values of associated HSR communication system are investigated and compared using Particle Swarm Optimization (PSO), Whale Optimization (WO) and Flower Pollination Algorithm (FPA) The given curve fitting plots adhere the dynamic scenario of HSR dataset and ultimately FPA predominates other techniques in presenting the model's accuracy.
引用
收藏
页码:1810 / 1814
页数:5
相关论文
共 20 条
[1]  
[Anonymous], 2017, 5G SPECTR ACC 26GHZ
[2]  
Bhuvaneshwari A, 2018, International Journal of Engineering & Technology, V7, P464, DOI [10.14419/ijet.v7i4.10.21041, 10.14419/ijet.v7i4.10.21041, DOI 10.14419/IJET.V7I4.10.21041]
[3]  
Bok J, 2014, INT CONF ADV COMMUN, P1, DOI 10.1109/ICACT.2014.6778910
[4]  
He RS, 2011, I C WIREL COMM NETW
[5]  
Hui B, 2016, INT CONF ADV COMMUN, P634, DOI 10.1109/ICACT.2016.7423500
[6]   Path Loss Prediction Based on Machine Learning Techniques: Principal Component Analysis, Artificial Neural Network, and Gaussian Process [J].
Jo, Han-Shin ;
Park, Chanshin ;
Lee, Eunhyoung ;
Choi, Haing Kun ;
Park, Jaedon .
SENSORS, 2020, 20 (07)
[7]  
Laiyemo A. O., 2018, HIGH SPEED MOVING NE
[8]  
Ma'ani FA, 2020, International Journal of Sustainable Transportation Technology, P58, DOI [10.31427/ijstt.2020.3.2.4, 10.31427/ijstt.2020.3.2.4, DOI 10.31427/IJSTT.2020.3.2.4]
[9]   An Integrated Antenna System for 4G and Millimeter-Wave 5G Future Handheld Devices [J].
Naqvi, Syeda, I ;
Naqvi, Aqeel H. ;
Arshad, Farzana ;
Riaz, Muhammad A. ;
Azam, Muhammad A. ;
Khan, Mansoor S. ;
Amin, Yasar ;
Loo, Jonathan ;
Tenhunen, Hannu .
IEEE ACCESS, 2019, 7 :116555-116566
[10]   A Deep Neural Network-Based Multi-Frequency Path Loss Prediction Model from 0.8 GHz to 70 GHz [J].
Nguyen, Chi ;
Cheema, Adnan Ahmad .
SENSORS, 2021, 21 (15)