Tuning Hot Carrier Dynamics of InP/ZnSe/ZnS Quantum Dots by Shell Morphology Control

被引:47
|
作者
Park, Jumi [1 ]
Won, Yu-Ho [2 ]
Han, Yongseok [2 ]
Kim, Hyun-Mi [3 ]
Jang, Eunjoo [2 ]
Kim, Dongho [1 ]
机构
[1] Yonsei Univ, Dept Chem, 50 Yonsei Ro, Seoul 03722, South Korea
[2] Samsung Elect, Samsung Adv Inst Technol, 130 Samsung Ro, Suwon 16678, Gyeonggi Do, South Korea
[3] Korea Elect Technol Inst, 25 Saenari Ro, Seongnam Si 13509, Gyeonggi Do, South Korea
关键词
charge carrier dynamics; crystalline structure; InP; ZnSe; ZnS; quantum dots; shell morphology; structural defects; INP-AT-ZNSES; AUGER RECOMBINATION; HIGHLY EFFICIENT; PHOTOLUMINESCENCE; CORE; BLINKING; RELAXATION; SURFACE; BRIGHT; ABSORPTION;
D O I
10.1002/smll.202105492
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Isotropic InP/ZnSe/ZnS quantum dots (QDs) are prepared at a high reaction temperature, which facilitates ZnSe shell growth on random facets of the InP core. Fast crystal growth enables stacking faults elimination, which induces anisotropic growth, and as a result, improves the photoluminescence (PL) quantum yield by nearly 20%. Herein, the effect of the QD morphology on photophysical properties is investigated by observing the PL blinking and ultrafast charge carrier dynamics. It is found that hot hole trapping is considerably suppressed in isotropic InP QDs, indicating that the stacking faults in the anisotropic InP/ZnSe structures act as defects for luminescence. These results highlight the importance of understanding the correlation between QD shapes and hot carrier dynamics, and present a way to design highly luminescent QDs for further promising display applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Ultrafast Charge Carrier Dynamics in InP/ZnSe/ZnS Core/Shell/Shell Quantum Dots
    Zeng, Shijia
    Li, Zhenbo
    Tan, Wenjiang
    Si, Jinhai
    Li, Yuren
    Hou, Xun
    NANOMATERIALS, 2022, 12 (21)
  • [2] Ultrafast Hole Transfer Dynamics in InP/ZnSe/ZnS Core/Shell/Shell Quantum Dots
    Zeng, Shijia
    Li, Zhenbo
    Tan, Wenjiang
    Si, Jinhai
    Li, Yuren
    Hou, Xun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (22): : 10609 - 10616
  • [3] Biexciton and trion dynamics in InP/ZnSe/ZnS quantum dots
    Sun, Haochen
    Cavanaugh, Paul
    Jen-La Plante, Ilan
    Ippen, Christian
    Bautista, Maria
    Ma, Ruiqing
    Kelley, David F.
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (05):
  • [4] Impurity absorption in ZnSe/InP/ZnS core/shell/shell spherical quantum dots
    R. G. Poghosyan
    Journal of Contemporary Physics (Armenian Academy of Sciences), 2014, 49 : 69 - 73
  • [5] Impurity absorption in ZnSe/InP/ZnS core/shell/shell spherical quantum dots
    Poghosyan, R. G.
    JOURNAL OF CONTEMPORARY PHYSICS-ARMENIAN ACADEMY OF SCIENCES, 2014, 49 (02) : 69 - 73
  • [6] Tuning the interfacial stoichiometry of InP core and InP/ZnSe core/shell quantum dots
    Park, Nayon
    Eagle, Forrest W.
    DeLarme, Asher J.
    Monahan, Madison
    LoCurto, Talia
    Beck, Ryan
    Li, Xiaosong
    Cossairt, Brandi M.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (08):
  • [7] Optoelectronic Properties of InP/ZnSe/ZnS Quantum Dots with Different ZnSe Shell Layer Thicknesses
    Chen, Xiang
    Zhao, Hao-Bing
    Luo, Zi-Qi
    Hu, Hai-Long
    Guo, Tai-Liang
    Li, Fu-Shan
    Faguang Xuebao/Chinese Journal of Luminescence, 2022, 43 (04): : 501 - 508
  • [8] Effect of indium alloying on the charge carrier dynamics of thick-shell InP/ZnSe quantum dots
    Freymeyer, Nathaniel J.
    Click, Sophia M.
    Reid, Kemar R.
    Chisholm, Matthew F.
    Bradsher, Cara E.
    McBride, James R.
    Rosenthal, Sandra J.
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (16):
  • [9] Temperature behavior of hot carrier dynamics in InP quantum dots
    Maleev, AV
    Ignatiev, IV
    Gerlovin, IY
    Kozin, IE
    Masumoto, Y
    PHYSICAL REVIEW B, 2005, 71 (19)
  • [10] The Effect of the Mid-Shell Thickness on the Charge-Carrier Dynamics of the Green-Light Emitting InP/ZnSe/ZnS Core-Shell Quantum Dots
    Kang, Dong-gu
    Won, Yu-Ho
    Park, Chanho
    Han, Yongseok
    Kim, Sang Kyu
    ADVANCED MATERIALS INTERFACES, 2024, 11 (02)