Simultaneous estimation of bi-directional causal effects and heritable confounding from GWAS summary statistics

被引:43
作者
Darrous, Liza [1 ,2 ]
Mounier, Ninon [1 ,2 ]
Kutalik, Zoltan [1 ,2 ,3 ]
机构
[1] Univ Lausanne, Univ Ctr Primary Care & Publ Hlth, Lausanne, Switzerland
[2] Swiss Inst Bioinformat, Lausanne, Switzerland
[3] Univ Lausanne, Dept Computat Biol, Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
MENDELIAN RANDOMIZATION; BIRTH-WEIGHT; RISK; INSTRUMENTS; EDUCATION; IMPACT; BMI;
D O I
10.1038/s41467-021-26970-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mendelian Randomisation (MR) is an increasingly popular approach that estimates the causal effect of risk factors on complex human traits. While it has seen several extensions that relax its basic assumptions, most suffer from two major limitations; their under-exploitation of genome-wide markers, and sensitivity to the presence of a heritable confounder of the exposure-outcome relationship. To overcome these limitations, we propose a Latent Heritable Confounder MR (LHC-MR) method applicable to association summary statistics, which estimates bi-directional causal effects, direct heritabilities, and confounder effects while accounting for sample overlap. We demonstrate that LHC-MR outperforms several existing MR methods in a wide range of simulation settings and apply it to summary statistics of 13 complex traits. Besides several concordant results with other MR methods, LHC-MR unravels new mechanisms (how disease diagnosis might lead to improved lifestyle) and reveals new causal effects (e.g. HDL cholesterol being protective against high systolic blood pressure), hidden from standard MR methods due to a heritable confounder of opposite effect direction. Mendelian Randomization approaches are being increasingly refined, but certain statistical limitations hinder their application to GWAS. Here, the authors propose a new Mendelian Randomization method to estimate bi- directional causal effects and explicitly account for heritable confounding.
引用
收藏
页数:15
相关论文
共 52 条
[1]   A map of human genome variation from population-scale sequencing [J].
Altshuler, David ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Collins, Francis S. ;
De la Vega, Francisco M. ;
Donnelly, Peter ;
Egholm, Michael ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Knoppers, Bartha M. ;
Lander, Eric S. ;
Lehrach, Hans ;
Mardis, Elaine R. ;
McVean, Gil A. ;
Nickerson, DebbieA. ;
Peltonen, Leena ;
Schafer, Alan J. ;
Sherry, Stephen T. ;
Wang, Jun ;
Wilson, Richard K. ;
Gibbs, Richard A. ;
Deiros, David ;
Metzker, Mike ;
Muzny, Donna ;
Reid, Jeff ;
Wheeler, David ;
Wang, Jun ;
Li, Jingxiang ;
Jian, Min ;
Li, Guoqing ;
Li, Ruiqiang ;
Liang, Huiqing ;
Tian, Geng ;
Wang, Bo ;
Wang, Jian ;
Wang, Wei ;
Yang, Huanming ;
Zhang, Xiuqing ;
Zheng, Huisong ;
Lander, Eric S. ;
Altshuler, David L. ;
Ambrogio, Lauren ;
Bloom, Toby ;
Cibulskis, Kristian ;
Fennell, Tim J. ;
Gabriel, Stacey B. .
NATURE, 2010, 467 (7319) :1061-1073
[2]   Effects of torcetrapib in patients at high risk for coronary events [J].
Barter, Philip J. ;
Caulfield, Mark ;
Eriksson, Mats ;
Grundy, Scott M. ;
Kastelein, John J. P. ;
Komajda, Michel ;
Lopez-Sendon, Jose ;
Mosca, Lori ;
Tardif, Jean-Claude ;
Waters, David D. ;
Shear, Charles L. ;
Revkin, James H. ;
Buhr, Kevin A. ;
Fisher, Marian R. ;
Tall, Alan R. ;
Brewer, Bryan .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 357 (21) :2109-2122
[3]   Does more education cause lower BMI, or do lower-BMI individuals become more educated? Evidence from the National Longitudinal Survey of Youth 1979 [J].
Benson, Rebecca ;
von Hippel, Paul T. ;
Lynch, Jamie L. .
SOCIAL SCIENCE & MEDICINE, 2018, 211 :370-377
[4]   Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator [J].
Bowden, Jack ;
Smith, George Davey ;
Haycock, Philip C. ;
Burgess, Stephen .
GENETIC EPIDEMIOLOGY, 2016, 40 (04) :304-314
[5]   Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression [J].
Bowden, Jack ;
Smith, George Davey ;
Burgess, Stephen .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 (02) :512-525
[6]  
Brumpton B., Within-family studies for Mendelian randomization: avoiding dynastic, assortative mating, and population stratification biases, DOI [DOI 10.1038/S41467-020-17117-4, 10.1101/602516, DOI 10.1101/602516]
[7]   An atlas of genetic correlations across human diseases and traits [J].
Bulik-Sullivan, Brendan ;
Finucane, Hilary K. ;
Anttila, Verneri ;
Gusev, Alexander ;
Day, Felix R. ;
Loh, Po-Ru ;
Duncan, Laramie ;
Perry, John R. B. ;
Patterson, Nick ;
Robinson, Elise B. ;
Daly, Mark J. ;
Price, Alkes L. ;
Neale, Benjamin M. .
NATURE GENETICS, 2015, 47 (11) :1236-+
[8]   LD Score regression distinguishes confounding from polygenicity in genome-wide association studies [J].
Bulik-Sullivan, Brendan K. ;
Loh, Po-Ru ;
Finucane, Hilary K. ;
Ripke, Stephan ;
Yang, Jian ;
Patterson, Nick ;
Daly, Mark J. ;
Price, Alkes L. ;
Neale, Benjamin M. .
NATURE GENETICS, 2015, 47 (03) :291-+
[9]   Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data [J].
Burgess, Stephen ;
Butterworth, Adam ;
Thompson, Simon G. .
GENETIC EPIDEMIOLOGY, 2013, 37 (07) :658-665
[10]   Association of Educational Attainment With Adiposity, Type 2 Diabetes, and Coronary Artery Diseases: A Mendelian Randomization Study [J].
Cao, Min ;
Cui, Bin .
FRONTIERS IN PUBLIC HEALTH, 2020, 8