Shuffle operations on discrete paths

被引:0
作者
Brlek, S. [1 ]
Labelle, G. [1 ]
Lacasse, A. [1 ]
机构
[1] Univ Quebec, LaCIM, Montreal, PQ H3C 3P8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
lattice paths; polygonal paths; discrete regions; shuffle; Dragon curve;
D O I
10.1016/j.tcs.2007.10.032
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the shuffle operation on paths. and study some parameters. In the case of square lattices, shuffling with a particular periodic word (of period 2) corresponding to paperfoldings reveals some characteristic properties: closed paths remain closed; the area and perimeter double; the center of gravity moves under a 45 degrees rotation and a root 2 zoom factor. We also observe invariance properties for the associated Dragon curves. Moreover, replacing square lattice paths by paths involving 2k pi/N-turns, we find analogous results using more general shuffles. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:75 / 89
页数:15
相关论文
共 9 条
[1]  
[Anonymous], 1977, FEYNMAN LECT PHYS
[2]   Properties of the contour path of discrete sets [J].
Brlek, S. ;
Labelle, G. ;
Lacasse, A. .
INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2006, 17 (03) :543-556
[3]  
Brlek S, 2003, LECT NOTES COMPUT SC, V2886, P277
[4]  
BRLEK S, 2006, P INT SCH C COMB AUT
[5]  
DAURAT A, 2003, P INT WORKSH COMB IM
[6]  
Freeman H., 1961, IRE T ELECTRON COMPU, V10, P260, DOI DOI 10.1109/TEC.1961.5219197
[7]  
Freeman H., 1970, PICTURE PROCESSING P, P241
[8]  
Lothaire M., 1983, Combinatorics on Words
[9]  
McCallum W. G., 1997, Multivariable Calculus