Presynaptic evidence for zinc release at the mossy fiber synapse of rat hippocampus

被引:38
作者
Ketterman, Joshua K. [1 ]
Li, Yang V. [1 ]
机构
[1] Ohio Univ, Dept Biomed Sci, Neurosci Program, Athens, OH 45701 USA
关键词
synaptic transmission; neurotransmission; neuromodulator; neurotransmitter; fluorescence imaging;
D O I
10.1002/jnr.21488
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Vesicular zinc (Zn2+) is found in a subset of glutamatergic nerve terminals throughout the mammalian forebrain and is colocalized with glutamate. Despite well-documented neuromodulatory roles, exocytosis of endogenous Zn2+ from presynaptic terminals has never been directly demonstrated, because existing studies have measured elevated Zn2+ concentrations by examining the perfusate. Thus, the specific origin of synaptic Zn2+ remains a controversial subject. Here, we describe synaptic Zn2+ trafficking between cellular compartments at hippocampal mossy fiber synapses by using the fluorescent indicator Zinpyr-1 to label the hippocampal mossy fiber boutons. We determined endogenous Zn2+ exocytosis by direct observation of vesicular Zn2+ as decreasing fluorescence intensity from presynaptic axonal boutons in the stratum lucidum of CA3 during neural activities induced by the stimulation of membrane depolarization. This presynaptic fluorescence gradually returned to a level near baseline after the withdrawal of moderate stimulation, indicating an endogenous mechanism to replenish vesicular Zn2+. The exocytosis of the synaptic Zn2+ was also dependent on extracellular Ca2+ and was sensitive to Zn2+-specific chelators. Vesicular Zn2+ loading was sensitive to the vacuolar-type H+-ATPase inhibitor concanamycin A, and our experiments indicated that blockade of vesicular reloading with concanamycin A led to a depletion of that synaptic Zn2+. Furthermore, synaptic Zn2+ translocated to the postsynaptic cell body upon release to produce increases in the concentration of weakly bound Zn2+ within the postsynaptic cytosol, demonstrating a feature unique to ionic substances released during neurotransmission. Our data provide important evidence for Zn2+ as a substance that undergoes release in a manner similar to common neurotransmitters. (C) 2007 Wiley-Liss, Inc.
引用
收藏
页码:422 / 434
页数:13
相关论文
共 46 条
[1]   SELECTIVE RELEASE OF ENDOGENOUS ZINC FROM THE HIPPOCAMPAL MOSSY FIBERS INSITU [J].
ANIKSZTEJN, L ;
CHARTON, G ;
BENARI, Y .
BRAIN RESEARCH, 1987, 404 (1-2) :58-64
[2]  
[Anonymous], 1974, Critical Stability Constants
[3]   RELEASE OF ENDOGENOUS ZN-2+ FROM BRAIN-TISSUE DURING ACTIVITY [J].
ASSAF, SY ;
CHUNG, SH .
NATURE, 1984, 308 (5961) :734-736
[4]   Fluorescence imaging study of extracellular zinc at the hippocampal mossy fiber synapse [J].
Bastian, Chinthasagar ;
Li, Yang V. .
NEUROSCIENCE LETTERS, 2007, 419 (02) :119-124
[5]   ENRICHMENT OF GLUTAMATE IN ZINC-CONTAINING TERMINALS OF THE CAT VISUAL-CORTEX [J].
BEAULIEU, C ;
DYCK, R ;
CYNADER, M .
NEUROREPORT, 1992, 3 (10) :861-864
[6]   BAFILOMYCINS - A CLASS OF INHIBITORS OF MEMBRANE ATPASES FROM MICROORGANISMS, ANIMAL-CELLS, AND PLANT-CELLS [J].
BOWMAN, EJ ;
SIEBERS, A ;
ALTENDORF, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (21) :7972-7976
[7]   Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model [J].
Buhl, EH ;
Otis, TS ;
Mody, I .
SCIENCE, 1996, 271 (5247) :369-373
[8]   Fluorescent sensors for Zn2+ based on a fluorescein platform:: Synthesis, properties and intracellular distribution [J].
Burdette, SC ;
Walkup, GK ;
Spingler, B ;
Tsien, RY ;
Lippard, SJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (32) :7831-7841
[9]   Neurotransmitter depletion by bafilomycin is promoted by vesicle turnover [J].
Cavelier, Pauline ;
Attwell, David .
NEUROSCIENCE LETTERS, 2007, 412 (02) :95-100
[10]   Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene [J].
Cole, TB ;
Wenzel, HJ ;
Kafer, KE ;
Schwartzkroin, PA ;
Palmiter, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (04) :1716-1721