Oscillations, travelling fronts and patterns in a supramolecular system

被引:185
作者
Leira-Iglesias, Jorge [1 ]
Tassoni, Alessandra [1 ]
Adachi, Takuji [1 ]
Stich, Michael [2 ]
Hermans, Thomas M. [1 ]
机构
[1] Univ Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, France
[2] Aston Univ, Syst Analyt Res Inst, Nonlinear & Complex Res Grp, Engn & Appl Sci, Birmingham, W Midlands, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
DRIVEN; MECHANISMS; WAVES;
D O I
10.1038/s41565-018-0270-4
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Supramolecular polymers, such as microtubules, operate under non-equilibrium conditions to drive crucial functions in cells, such as motility, division and organelle transport(1). In vivo and in vitro size oscillations of individual microtubules(2'3) (dynamic instabilities) and collective oscillations(4) have been observed. In addition, dynamic spatial structures, like waves and polygons, can form in non-stirred systems(5). Here we describe an artificial supramolecular polymer made of a perylene diimide derivative that displays oscillations, travelling fronts and centimetre-scale self-organized patterns when pushed far from equilibrium by chemical fuels. Oscillations arise from a positive feedback due to nucleation-elongation fragmentation, and a negative feedback due to size-dependent depolymerization. Travelling fronts and patterns form due to self-assembly induced density differences that cause system-wide convection. In our system, the species responsible for the nonlinear dynamics and those that self-assemble are one and the same. In contrast, other reported oscillating assemblies formed by vesicles(6), micelles(7) or particless(8) rely on the combination of a known chemical oscillator and a stimuli responsive system, either by communication through the solvent (for example, by changing pH(7-9)), or by anchoring one of the species covalently (for example, a Belousov-Zhabotinsky catalyst(6,10)). The design of self-oscillating supramolecular polymers and large-scale dissipative structures brings us closer to the creation of more life-like materials(11) that respond to external stimuli similarly to living cells, or to creating artificial autonomous chemical robots(12).
引用
收藏
页码:1021 / +
页数:8
相关论文
共 37 条
[1]  
Alberts B., 2002, Molecular Biology of the Cell. (4th edition), V4th ed
[2]   Transient assembly of active materials fueled by a chemical reaction [J].
Boekhoven, Job ;
Hendriksen, Wouter E. ;
Koper, Ger J. M. ;
Eelkema, Rienk ;
van Esch, Jan H. .
SCIENCE, 2015, 349 (6252) :1075-1079
[3]   Mechanosensitive Self-Replication Driven by Self-Organization [J].
Carnall, Jacqui M. A. ;
Waudby, Christopher A. ;
Belenguer, Ana M. ;
Stuart, Marc C. A. ;
Peyralans, Jerome J. -P. ;
Otto, Sijbren .
SCIENCE, 2010, 327 (5972) :1502-1506
[4]   Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments [J].
Cohen, Samuel I. A. ;
Vendruscolo, Michele ;
Welland, Mark E. ;
Dobson, Christopher M. ;
Terentjev, Eugene M. ;
Knowles, Tuomas P. J. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (06)
[5]  
Epstein IR., 1998, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos
[6]   Making waves in a photoactive polymer film [J].
Gelebart, Anne Helene ;
Mulder, Dirk Jan ;
Varga, Michael ;
Konya, Andrew ;
Vantomme, Ghislaine ;
Meijer, E. W. ;
Selinger, Robin L. B. ;
Broer, Dirk J. .
NATURE, 2017, 546 (7660) :632-+
[7]  
Gray P., 1994, Oscillations, Waves, and Chaos in Chemical Kinetics
[8]  
Grzybowski BA, 2016, NAT NANOTECHNOL, V11, P584, DOI [10.1038/nnano.2016.116, 10.1038/NNANO.2016.116]
[9]   Modeling oscillatory microtubule polymerization [J].
Hammele, M ;
Zimmermann, W .
PHYSICAL REVIEW E, 2003, 67 (02) :19-219031
[10]   Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots [J].
Hess, H. ;
Ross, Jennifer L. .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (18) :5570-5587