Self-approximation of Dirichlet L-functions

被引:11
作者
Garunkstis, Ramunas [1 ]
机构
[1] Vilnius State Univ, Dept Math & Informat, LT-03225 Vilnius, Lithuania
关键词
Dirichlet L-function; Self-approximation; Strong recurrence; JOINT UNIVERSALITY; RECURRENCE;
D O I
10.1016/j.jnt.2011.01.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d be a real number, let s be in a fixed compact set of the strip 1/2 < sigma < 1. and let L(s, chi) be the Dirichlet L-function. The hypothesis is that for any real number d there exist 'many' real numbers tau such that the shifts L(s + i tau, chi) and L(s + id tau, chi) are 'near' each other. If d is an algebraic irrational number then this was obtained by T. Nakamura. L Pankowski solved the case then d is a transcendental number. We prove the case then d not equal 0 is a rational number. If d = 0 then by B. Bagchi we know that the above hypothesis is equivalent to the Riemann hypothesis for the given Dirichlet L-function. We also consider a more general version of the above problem. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1286 / 1295
页数:10
相关论文
共 18 条
[1]  
[Anonymous], 1975, THEORY FUNCTIONS
[2]   RECURRENCE IN TOPOLOGICAL DYNAMICS AND THE RIEMANN-HYPOTHESIS [J].
BAGCHI, B .
ACTA MATHEMATICA HUNGARICA, 1987, 50 (3-4) :227-240
[3]   A JOINT UNIVERSALITY THEOREM FOR DIRICHLET L-FUNCTIONS [J].
BAGCHI, B .
MATHEMATISCHE ZEITSCHRIFT, 1982, 181 (03) :319-334
[4]  
Bagchi B, 1981, The Statistical Behaviour and Universality Properties of the Riemann Zeta Function and other Allied Dirichlet Series
[5]  
Baker A., 1975, TRANSCENDENTAL NUMBE
[6]  
Besicovitch A.S., 1954, Almost Periodic Functions, VVolume 4
[8]   Effective estimates for the distribution of values of Euler products [J].
Girondo, E ;
Steuding, J .
MONATSHEFTE FUR MATHEMATIK, 2005, 145 (02) :97-106
[9]  
Gonek S.M., 1979, Thesis
[10]   Distribution functions and the Riemann zeta function [J].
Jessen, Borge ;
Wintner, Aurel .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1935, 38 (1-3) :48-88