Statistical Analysis of Rain at Millimeter Waves in Tropical Area

被引:27
作者
Al-Saman, Ahmed M. [1 ]
Cheffena, Michael [1 ]
Mohamed, Marshed [1 ]
Azmi, Marwan Hadri [2 ]
Ai, Yun [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Mfg & Civil Engn, N-2815 Gjovik, Norway
[2] Univ Teknol Malaysia, Sch Elect Engn, Wireless Commun Ctr, Fac Engn, Johor Baharu 81310, Malaysia
来源
IEEE ACCESS | 2020年 / 8卷 / 08期
基金
欧盟地平线“2020”;
关键词
Rain; Attenuation; Attenuation measurement; Predictive models; Wireless communication; Satellite broadcasting; Data models; Mm-wave; rain attenuation; propagation; E-band; K-band; 73; 5; GHz; tropical area; TERRESTRIAL MICROWAVE LINKS; WET-ANTENNA ATTENUATION; PREDICTION MODEL; RATE DISTRIBUTIONS; REAL MEASUREMENT; FADE DURATIONS; RADIO LINKS; 15; GHZ; PROPAGATION; SYSTEMS;
D O I
10.1109/ACCESS.2020.2979683
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The high frequencies of millimeter wave (mm-wave) bands have been recognized for the fifth generation (5G) and beyond wireless communication networks. However, the radio propagation channel at high frequencies can be largely influenced by rain attenuation, especially in tropical regions with high rainfall intensity. In this paper, we present the results of rainfall intensity and rain attenuation in tropical regions based on one-year measurement campaign. The measurements were conducted from September 2018 until September 2019 at 21.8 GHz (K-band) and 73.5 GHz (E-band) in Malaysia. The rainfall intensity was collected using three rain gauges installed along a 1.8 km link. The rain attenuation is computed from the difference between the measured minimum received signal level (RSL) during clear sky and rain conditions. The measured rain rate and rain attenuation distributions are then analysed and benchmarked with several previous measurements and well-known prediction models such as the ITU-R P. 530-17. The rainfall rate results showed that the best agreement between the measured rainfall rate in Malaysia and the ITU-R PN.837-1 prediction value for Zone P is up to 0.01% of time (99.99% of time agrees well and only disagrees for 0.01% of time). For the E-band, the maximum measured rain attenuation exceeding 0.03% of the year is around 40.1 and 20 dB for 1.8 and 0.3 km links, respectively, at the maximum rain rate of 108 mm/h. For the K-band, the maximum rain attenuation exceeding 0.01% of the year is around 31 dB for the 1.8 km link. Finally, the rain rates exceeding 108 and 180 mm/h at 73.5 and 21.8 GHz, respectively, along the 1.8 km path caused an outage on our measurement setup. The rain rate of 193 mm/h and above caused an outage for the 0.3 km E-band link. The experimental data as well as the presented data analysis can be utilized for efficient planning and deployments of mm-wave wireless communication systems in tropical regions.
引用
收藏
页码:51044 / 51061
页数:18
相关论文
共 149 条
[1]  
Abayomi I.O.Y., 2013, J. Ind. Intell. Inf, V1, P155
[2]   Investigation of the Unified Rain Attenuation Prediction Method With Data From Tropical Climates [J].
Abdulrahman, A. Y. ;
Rahman, T. A. ;
Rafiqul, Islam Md. ;
Olufeagba, B. J. ;
Abdulrahman, T. A. ;
Akanni, J. ;
Amuda, S. A. Y. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2014, 13 :1108-1111
[3]   Rain attenuation measurements over terrestrial microwave links operating at 15 GHz in Malaysia [J].
Abdulrahman, A. Y. ;
Rahman, T. Abdul ;
Abdulrahim, S. K. ;
Islam, Md. Rafiqul .
INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2012, 25 (11) :1479-1488
[4]   EMPIRICALLY DERIVED PATH REDUCTION FACTOR FOR TERRESTRIAL MICROWAVE LINKS OPERATING AT 15 GHZ IN PENINSULA MALAYSIA [J].
Abdulrahman, A. Y. ;
Rahman, T. A. ;
Rahim, S. K. A. ;
Islam, M. R. Ul .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2011, 25 (01) :23-37
[5]   Comparison of measured rain attenuation in the 10.982-GHz band with predictions and sensitivity analysis [J].
Abdulrahman, Yusuf ;
Rahman, Tharek A. ;
Islam, Rafiqul M. ;
Olufeagba, Benjamin J. ;
Chebil, Jalel .
INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, 2015, 33 (03) :185-195
[6]  
Alhilali M., 2019, TELKOMNIKA Telecommun. Comput. Electron. Control, V17, P2139
[7]  
[Anonymous], 2019, 2019 13 EUROPEAN C A
[8]  
[Anonymous], 1994, CHARACTERISTICS PREC
[9]  
[Anonymous], 2017, P53017 ITUR
[10]  
[Anonymous], 2005, ITU-R P.838-3, P1