The interplay of electron-photon and cavity-environment coupling on the electron transport through a quantum dot system

被引:4
作者
Abdullah, Nzar Rauf [1 ,2 ]
Tang, Chi-Shung [3 ]
Manolescu, Andrei [4 ]
Gudmundsson, Vidar [5 ]
机构
[1] Univ Sulaimani, Coll Sci, Phys Dept, Div Computat Nanosci, Sulaimani 46001, Kurdistan Regio, Iraq
[2] Komar Univ Sci & Technol, Coll Engn, Comp Engn Dept, Sulaimani 46001, Kurdistan Regio, Iraq
[3] Natl United Univ, Dept Mech Engn, Miaoli 36003, Taiwan
[4] Reykjav Univ, Sch Sci & Engn, Menntavegur 1, IS-101 Reykjavik, Iceland
[5] Univ Iceland, Sci Inst, Dunhaga 3, IS-107 Reykjavik, Iceland
关键词
Purcell effect; Cavity-Quantum electrodynamics; Quantum transport; Quantum Dot; Quantum master equation; SPONTANEOUS EMISSION; COHERENT GENERATION; NONCLASSICAL LIGHT; RABI OSCILLATIONS; SPIN; NUCLEAR; QUBITS; STATE; LASER; CHIP;
D O I
10.1016/j.physe.2020.113996
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We theoretically investigate the characteristics of the electron transport through a two-dimensional a quantum dot system in the xy-plane coupled to a photon cavity and a photon reservoir, the environment. The electronphoton coupling, g(gamma), and the cavity-reservoir coupling, kappa, are tuned to study the system in the weak, g(gamma )<= kappa and the strong coupling regime, g(gamma) > kappa. An enhancement of current is both seen with increasing g, and If in the weak coupling regime for both x- and y-polarization of the photon field. This is a direct consequence of the Purcell effect. The current enhancement is due to the contribution of the photon replica states to the electron transport in which intraband transitions play an important role. The properties of the electron transport are drastically changed in the strong coupling regime with an x-polarized photon field in which the current is suppressed with increasing g(gamma), but it is still increasing with kappa. This behavior of the current is related to the population of purely electronic states and depopulation of photon replica states.
引用
收藏
页数:7
相关论文
共 62 条
[1]   The photocurrent generated by photon replica states of an off-resonantly coupled dot-cavity system [J].
Abdullah, Nzar Rauf ;
Tang, Chi-Shung ;
Manolescu, Andrei ;
Gudmundsson, Vidar .
SCIENTIFIC REPORTS, 2019, 9 (1)
[2]   Thermoelectric Inversion in a Resonant Quantum Dot-Cavity System in the Steady-State Regime [J].
Abdullah, Nzar Rauf ;
Tang, Chi-Shung ;
Manolescu, Andrei ;
Gudmundsson, Vidar .
NANOMATERIALS, 2019, 9 (05)
[3]   Spin-dependent heat and thermoelectric currents in a Rashba ring coupled to a photon cavity [J].
Abdullah, Nzar Rauf ;
Tang, Chi-Shung ;
Manolescu, Andrei ;
Gudmundsson, Vidar .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 95 :102-107
[4]   Optical switching of electron transport in a waveguide-QED system [J].
Abdullah, Nzar Rauf ;
Tang, Chi-Shung ;
Manolescu, Andrei ;
Gudmundsson, Vidar .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2016, 84 :280-284
[5]   Coherent transient transport of interacting electrons through a quantum waveguide switch [J].
Abdullah, Nzar Rauf ;
Tang, Chi-Shung ;
Manolescu, Andrei ;
Gudmundsson, Vidar .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (01)
[6]   Delocalization of electrons by cavity photons in transport through a quantum dot molecule [J].
Abdullah, Nzar Rauf ;
Tang, Chi-Shung ;
Manolescu, Andrei ;
Gudmundsson, Vidar .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2014, 64 :254-262
[7]   Excitation spectra of a quantum ring embedded in a photon cavity [J].
Arnold, Thorsten ;
Tang, Chi-Shung ;
Manolescu, Andrei ;
Gudmundsson, Vidar .
JOURNAL OF OPTICS, 2015, 17 (01)
[8]  
Aspuru-Guzik A, 2012, NAT PHYS, V8, P285, DOI [10.1038/NPHYS2253, 10.1038/nphys2253]
[9]   Dissipation and ultrastrong coupling in circuit QED [J].
Beaudoin, Felix ;
Gambetta, Jay M. ;
Blais, A. .
PHYSICAL REVIEW A, 2011, 84 (04)
[10]   All-optical quantum simulator of qubit noisy channels [J].
Cialdi, Simone ;
Rossi, Matteo A. C. ;
Benedetti, Claudia ;
Vacchini, Bassano ;
Tamascelli, Dario ;
Olivares, Stefano ;
Paris, Matteo G. A. .
APPLIED PHYSICS LETTERS, 2017, 110 (08)