Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery

被引:91
作者
Yang, Min-Hsiung [1 ]
Yeh, Rong-Hua [2 ]
机构
[1] Natl Kaohsiung Marine Univ, Dept Naval Architecture & Ocean Engn, Kaohsiung, Taiwan
[2] Natl Kaohsiung Marine Univ, Dept Marine Engn, Kaohsiung, Taiwan
关键词
ORC; Waste heat recovery; Thermo-economic; Optimal; Marine diesel engine; Net power output index; TEMPERATURE GEOTHERMAL SOURCES; WORKING FLUID SELECTION; THERMODYNAMIC ANALYSIS; PERFORMANCE ANALYSIS; POWER-PLANTS; ORC; EXPLOITATION; EXERGY; ENERGY; PART;
D O I
10.1016/j.energy.2015.01.036
中图分类号
O414.1 [热力学];
学科分类号
摘要
The thermo-economic optimization of an ORC (organic Rankine cycle) used to recover waste heat from large marine diesel engines are conducted numerically. The variations of net power output, thermal efficiency, and total cost of equipments of the ORC system with various turbine inlet and outlet pressures are investigated. The net power output index is first proposed to evaluate the performance for this waste heat recovery system. To consider the environmental protection, working fluids which are zero ozone depletion potential and low global warming potential are selected in the simulation of the ORC system. For the widely-used working fluid, R245fa, an improvement of 6% in thermal efficiency is obtained for the proposed system compared with the ORC system recovering heat from marine diesel engine. The results show that, among these working fluids, R1234yf performs the best in the optimal thermo-economic performance evaluation, followed by R1234ze, R152a, and R600a; R245fa performs the least favorably. In addition, the maximal thermo-economic performance of the presented ORC system with R1234yf is higher than that with R245fa by 9%. Finally, the calculated corresponding optimal thermal efficiency of the ORC system and turbine inlet and outlet pressures of working fluids are obtained and compared. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:256 / 268
页数:13
相关论文
共 43 条
[1]  
[Anonymous], WARTS RT FLEX96 B MA
[2]   Binary ORC (Organic Rankine Cycles) power plants for the exploitation of medium low temperature geothermal sources - Part B: Techno-economic optimization [J].
Astolfi, Marco ;
Romano, Matteo C. ;
Bombarda, Paola ;
Macchi, Ennio .
ENERGY, 2014, 66 :435-446
[3]   Binary ORC (organic Rankine cycles) power plants for the exploitation of medium-low temperature geothermal sources - Part A: Thermodynamic optimization [J].
Astolfi, Marco ;
Romano, Matteo C. ;
Bombarda, Paola ;
Macchi, Ennio .
ENERGY, 2014, 66 :423-434
[4]   Experimental tests and modelization of a domestic-scale ORC (Organic Rankine Cycle) [J].
Bracco, Roberto ;
Clemente, Stefano ;
Micheli, Diego ;
Reini, Mauro .
ENERGY, 2013, 58 :107-116
[5]   Thermodynamic analysis of an organic Rankine cycle for waste heat recovery from gas turbines [J].
Carcasci, Carlo ;
Ferraro, Riccardo ;
Miliotti, Edoardo .
ENERGY, 2014, 65 :91-100
[6]   Analysis of a carbon dioxide transcritical power cycle using a low temperature source [J].
Cayer, Emmanuel ;
Galanis, Nicolas ;
Desilets, Martin ;
Nesreddine, Hakim ;
Roy, Philippe .
APPLIED ENERGY, 2009, 86 (7-8) :1055-1063
[7]  
Cengel V. A., 2006, THERMODYNAMICS ENG A
[8]  
Cooper M.G., 1984, Advances in Heat Transfer, V16, P157, DOI [10.1016/S0065-2717(08)70205-3, DOI 10.1016/S0065-2717(08)70205-3]
[9]   Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid [J].
Declaye, Sebastien ;
Quoilin, Sylvain ;
Guillaume, Ludovic ;
Lemort, Vincent .
ENERGY, 2013, 55 :173-183
[10]   Selection of working fluids for a novel low-temperature geothermally-powered ORC based cogeneration system [J].
Guo, T. ;
Wang, H. X. ;
Zhang, S. J. .
ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (06) :2384-2391