A General Reconstruction Method for Multidimensional Sparse Sampling Nuclear Magnetic Resonance Spectroscopy

被引:5
|
作者
Lin, Enping [1 ]
Bai, Zhemin [1 ]
Yuan, Yifei [1 ]
Chen, Zhiwei [1 ]
Yang, Yu [1 ]
Huang, Yuqing [1 ]
Chen, Zhong [1 ]
机构
[1] Xiamen Univ, Dept Elect Sci, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2021年 / 12卷 / 43期
基金
中国国家自然科学基金;
关键词
NMR-SPECTROSCOPY; THRESHOLDING ALGORITHM; TRANSFORM NMR; DIFFUSION; REGULARIZATION; RESOLUTION;
D O I
10.1021/acs.jpclett.1c03063
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multidimensional NMR spectroscopy provides a powerful tool for structure elucidation and dynamic analysis of complex samples, particularly for biological macromolecules. Multidimensional sparse sampling effectively accelerates NMR experiments while an efficient reconstruction method is generally required for unraveling spectra. Various reconstruction methods were proposed for pure Fourier NMR (only involving chemical shifts and J couplings detection). However, reconstruction concerned with Laplace-related NMR (i.e., involving relaxation or diffusion detection) is more challenging due to its ill-posed property. The existing Laplace-related NMR sparse sampling reconstruction methods suffer from poor resolution and possible artifacts in the resulting spectra owing to the pitfalls of the optimization algorithms. Herein, we propose a general approach for fast high-resolution reconstruction of multidimensional sparse sampling NMR, including pure Fourier, mixed Fourier-Laplace, and pure Laplace NMR, benefiting from the comprehensive sparse constraint and effective optimization algorithm and thus showing the promising prospects of multidimensional NMR.
引用
收藏
页码:10622 / 10630
页数:9
相关论文
共 50 条
  • [1] Low-rank and sparse reconstruction for fast diffusion nuclear magnetic resonance spectroscopy
    Guo, Di
    Zhan, Jiaying
    Zhou, Yirong
    Tu, Zhangren
    Zhang, Zifei
    Chen, Zhong
    Qu, Xiaobo
    IET SIGNAL PROCESSING, 2021, 15 (02) : 88 - 97
  • [2] GARANT - A General Algorithm for Resonance Assignment of Multidimensional Nuclear Magnetic Resonance Spectra
    Bartels, C.
    Guentert, P.
    Billeter, M.
    Wuethrich, K.
    Journal of Computational Chemistry, 18 (01):
  • [3] GARANT - A general algorithm for resonance assignment of multidimensional nuclear magnetic resonance spectra
    Bartels, C
    Guntert, P
    Billeter, M
    Wuthrich, K
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1997, 18 (01) : 139 - 149
  • [4] A Sparse Representation Method for Magnetic Resonance Spectroscopy Quantification
    Guo, Yu
    Ruan, Su
    Landre, Jerome
    Constans, Jean-Marc
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (07) : 1620 - 1627
  • [5] Iterative Adaptive Sparse Sampling Method for Magnetic Resonance Imaging
    Placidi, Giuseppe
    Cinque, Luigi
    Petracca, Andrea
    Polsinelli, Matteo
    Spezialetti, Matteo
    ICPRAM: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2017, : 510 - 518
  • [6] Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy
    Wei, Zhiliang
    Lin, Liangjie
    Ye, Qimiao
    Li, Jing
    Cai, Shuhui
    Chen, Zhong
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (02):
  • [7] Sparse coding neural gas for analysis of Nuclear Magnetic Resonance Spectroscopy
    Schleif, Prank-Michael
    Ongyerth, Matthias
    Villmann, Thomas
    PROCEEDINGS OF THE 21ST IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, 2008, : 620 - 625
  • [8] Maximum entropy reconstruction, spectrum analysis and deconvolution in multidimensional nuclear magnetic resonance
    Hoch, JC
    Stern, AS
    NUCLEAR MAGNETIC RESONANCE OF BIOLOGICA MACROMOLECULES, PT A, 2001, 338 : 159 - 178
  • [9] MULTIDIMENSIONAL NUCLEAR-MAGNETIC-RESONANCE SPECTROSCOPY OF DNA-BINDING PROTEINS
    PARRAGA, G
    KLEVIT, RE
    METHODS IN ENZYMOLOGY, 1991, 208 : 63 - 82
  • [10] Nuclear Magnetic Resonance Spectroscopy
    1600, Access Intelligence (127):