Applicability of enhancement factor models for CO2 absorption into aqueous MEA solutions

被引:20
作者
Putta, Koteswara Rao [1 ]
Tobiesen, Finn Andrew [2 ]
Svendsen, Hallvard F. [1 ]
Knuutila, Hanna K. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Chem Engn, NO-7491 Trondheim, Norway
[2] SINTEF Mat & Chem, Postbox 4760 Sluppen, NO-7494 Trondheim, Norway
关键词
Enhancement factor model; Mass transfer; Chemical reaction; CO2; absorption; Aqueous alkanolamines; COMPLEX CHEMICAL-REACTIONS; GAS-LIQUID REACTIONS; CARBON-DIOXIDE ABSORPTION; MASS-TRANSFER; MONOETHANOLAMINE SOLUTIONS; PENETRATION THEORY; CAPTURE PROCESS; REACTIVE ABSORPTION; UNEQUAL DIFFUSIVITIES; IRREVERSIBLE REACTION;
D O I
10.1016/j.apenergy.2017.08.173
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In many chemical industrial processes, mass transfer across gas-liquid interfaces accompanied by chemical reaction is the governing phenomena. In case of mass transfer accompanied by a chemical reaction in the liquid phase, the reaction will enhance mass transfer and generally the mass transfer enhancement is quantified in terms of an enhancement factor. Large number of enhancement factor models have been developed in literature and used without critical analysis for analyzing pilot data for CO2 absorption into aqueous amines. In order to perform such a critical analysis, 24 models are tested using lab-scale experimental data from four independent apparatuses for CO2 absorption into MEA solutions covering a range of different conditions such as short and long contact times, with and without gas phase resistance, high and low CO2 loadings and temperatures. Of the 24 enhancement factor models tested only six models were found to satisfactorily predict the experimental CO2 fluxes. These were the models based on the simple pseudo-first order reaction assumption, Emodels 1, 2 and 3 by Hatta [2] and Dankwerts [4] respectively, Emodel 20, the deCoursey and Thring [44] model based on Danckwert's surface renewal theory with unequal diffusivities, Emodel 24, the recently published generalized model by Gaspar and Fosbol [51] and Emodel 21, the Tufano et al. [67] model based surface renewal theory. All these models were found to work equally well to the discretized penetration model. No significant difference was found between Emodels 1, 2 and 3, indicating that whether one uses as basis a film, penetration or surface renewal model, is of insignificant importance. The success of the simple models is attributed to the short contact times in the experiments used as basis and the accuracy of the kinetic model. Contact times of the same magnitude between mixing points is also encountered in industrial packings and it is believed that the simple enhancement factor models may work well also in these cases if an accurate kinetic model is used.
引用
收藏
页码:765 / 783
页数:19
相关论文
共 50 条
  • [31] Experiments on the Kinetics and Activation Mechanism of CO2 loaded MEA-MDEA aqueous solutions
    Fu, Dong
    Wei, Lin
    Fei, Xiang
    PROGRESS IN ENVIRONMENTAL SCIENCE AND ENGINEERING, PTS 1-4, 2013, 610-613 : 1213 - 1217
  • [32] Removal characteristics of CO2 using aqueous MEA/AMP solutions in the absorption and regeneration process
    Choi, Won-Joon
    Seo, Jong-Beom
    Jang, Sang-Yong
    Jung, Jong-Hyeon
    Oh, Kwang-Joong
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2009, 21 (07) : 907 - 913
  • [33] Characterization and comparison of the CO2 absorption performance into aqueous, quasi-aqueous and non-aqueous MEA solutions
    Kang, Min-Kyoung
    Jeon, Soo-Bin
    Cho, Joon-Hyung
    Kim, Jin-Seop
    Oh, Kwang-Joong
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2017, 63 : 281 - 288
  • [34] CO2 absorption enhancement with MEA in micropacked bed reactors: Mass transfer experiment and model study
    Zhou, Tao
    Hu, Jinyan
    Zhang, Hongda
    Li, Hansheng
    Sang, Le
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 339
  • [35] Heat of absorption of CO2 in aqueous ammonia, piperazine solutions and their mixtures
    Liu, Jinzhao
    Wang, Shujuan
    Svendsen, Hallvard F.
    Idrees, Muhammad Usman
    Kim, Inna
    Chen, Changhe
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2012, 9 : 148 - 159
  • [36] CO2 Absorption in Aqueous Monoethanolamine/Methyldiethanolamine/Diethylenetriamine and Their Blends Solutions
    Yang, Jian
    Wen, Juan
    Wu, Guofang
    Liu, Qingcai
    Kirk, D. W.
    Bao, Simin
    ASIAN JOURNAL OF CHEMISTRY, 2013, 25 (01) : 563 - 566
  • [37] Experimental study on the absorption enhancement of CO2 by MDEA-MEA based nanofluids
    Liang, Jiaxin
    Han, Huiyu
    Li, Wenbo
    Ma, Xiaoxun
    Xu, Long
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2022, 100 (11) : 3335 - 3344
  • [38] Promoting CO2 absorption in aqueous amines with benzylamine
    Richner, Gilles
    GHGT-11, 2013, 37 : 423 - 430
  • [39] CO2 capture using monoethanolamine (MEA) aqueous solution: Modeling and optimization of the solvent regeneration and CO2 desorption process
    Mores, Patricia
    Scenna, Nicolas
    Mussati, Sergio
    ENERGY, 2012, 45 (01) : 1042 - 1058
  • [40] CO2 Capture with MEA Absorption
    Zhang Jian
    Ren Jianxing
    Sun Tianyu
    Wang Qinyang
    ENVIRONMENTAL PROTECTION AND RESOURCES EXPLOITATION, PTS 1-3, 2013, 807-809 : 1514 - 1517