Program Analysis and Verification Based on Kleene Algebra in Isabelle/HOL

被引:0
作者
Armstrong, Alasdair [1 ]
Struth, Georg [1 ]
Weber, Tjark [2 ]
机构
[1] Univ Sheffield, Dept Comp Sci, Sheffield, S Yorkshire, England
[2] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
来源
INTERACTIVE THEOREM PROVING, ITP 2013 | 2013年 / 7998卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Schematic Kleene algebra with tests (SKAT) supports the equational verification of flowchart scheme equivalence and captures simple while-programs with assignment statements. We formalise SKAT in Isabelle/HOL, using the quotient type package to reason equationally in this algebra. We apply this formalisation to a complex flowchart transformation proof from the literature. We extend SKAT with assertion statements and derive the inference rules of Hoare logic. We apply this extension in simple program verification examples and the derivation of additional Hoare-style rules. This shows that algebra can provide an abstract semantic layer from which different program analysis and verification tasks can be implemented in a simple lightweight way.
引用
收藏
页码:197 / 212
页数:16
相关论文
共 26 条
[1]  
Aboul-Hosn Kamal., 2006, J APPL NONCLASSICAL, V16, P9
[2]  
Angus A., 2001, TR20011844 CORN U CO
[3]  
[Anonymous], 2019, LCP ISABELLE 2019
[4]  
[Anonymous], 2006, THESIS
[5]  
[Anonymous], 2011, P 26 ACM S APPL COMP
[6]  
Armstrong Alasdair, 2012, Relational and Algebraic Methods in Computer Science. Proceedings 13th International Conference, RAMiCS 2012, P66, DOI 10.1007/978-3-642-33314-9_5
[7]  
Armstrong A., 2013, KLEENE ALGEBRA ARCH
[8]  
Berghammer R, 2010, LECT NOTES COMPUT SC, V6120, P22, DOI 10.1007/978-3-642-13321-3_4
[9]   DECIDING KLEENE ALGEBRAS IN COQ [J].
Braibant, Thomas ;
Pous, Damien .
LOGICAL METHODS IN COMPUTER SCIENCE, 2012, 8 (01)
[10]  
Cohen E, 2000, LECT NOTES COMPUT SC, V1837, P45