The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants

被引:136
|
作者
Gao, Shi-Qing [1 ,3 ]
Chen, Ming [3 ]
Xu, Zhao-Shi [3 ]
Zhao, Chang-Ping [1 ]
Li, Liancheng [3 ]
Xu, Hui-jun [3 ]
Tang, Yi-miao [1 ]
Zhao, Xin [2 ]
Ma, You-Zhi [1 ,3 ]
机构
[1] Beijing Acad Agr & Forestry Sci, Beijing Engn & Tech Res Ctr Hybrid Wheat, Beijing 100097, Peoples R China
[2] Beihang Univ, Beijing 100191, Peoples R China
[3] Chinese Acad Agr Sci, Natl Key Facil Crop Genet Resources & Genet Impro, Key Lab Crop Genet & Breeding, Minist Agr,Inst Crop Sci, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Soybean; bZIP transcription factor; ABA; Abiotic stress tolerance; Transgenic wheat; ELEMENT-BINDING FACTOR; ABSCISIC-ACID; GENE-EXPRESSION; SIGNAL-TRANSDUCTION; LOW-TEMPERATURE; BZIP FACTOR; ARABIDOPSIS; ABA; DROUGHT; PROTEIN;
D O I
10.1007/s11103-011-9738-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Abscisic acid (ABA)-responsive element binding proteins (AREBs) are basic domain/leucine zipper transcription factors that bind to the ABA-responsive element (ABRE) in the promoter regions of ABA-inducible genes in plants. A novel bZIP transcription factor gene, GmbZIP1, encoding 438 amino acids with a conserved bZIP domain composed of 60 amino acids was isolated from salt-tolerant soybean cv. Tiefeng 8. Southern blotting showed that only one copy was present in the soybean genome. Phylogenetic analyses showed that GmbZIP1 belonged to the AREB subfamily of the bZIP family and was most closely related to AtABF2 and OsTRAB1. The expression of GmbZIP1 was highly induced by ABA, drought, high salt and low temperature; and GmbZIP1 was expressed in soybean roots, stems and leaves under different stress conditions. GmbZIP1 was localized inside the nuclei of transformed onion epidermal cells. Overexpression of GmbZIP1 enhanced the responses of transgenic plants to ABA and triggered stomatal closure under stresses, potentially leading to improved tolerances to several abiotic stresses such as high salt, low temperature and drought in transgenic plants. Furthermore, overexpression of GmbZIP1 affected the expression of some ABA or stress-related genes involved in regulating stomatal closure in Arabidopsis under ABA, drought and high salt stress conditions. A few AREB elements were detected in the promoter region of those ABA or stress-related genes, suggesting that GmbZIP1 regulates the ABA response or stomatal closure mediated by those downstream genes in transgenic Arabidopsis. Moreover, GmbZIP1 was used to improve the drought tolerance trait of Chinese wheat varieties BS93. Functional analysis showed that overexpression of GmbZIP1 enhanced the drought tolerance of transgenic wheat, and transcripts of GmbZIP1 were detected in transgenic wheat using RT-PCR. In addition, GmbZIP1 overexpression did not result in growth retardation in all transgenic plants, suggesting that GmbZIP1 may be a valuable genetic resource for engineering stress tolerance of crops.
引用
收藏
页码:537 / 553
页数:17
相关论文
共 50 条
  • [21] The SsDREB Transcription Factor from the Succulent Halophyte Suaeda salsa Enhances Abiotic Stress Tolerance in Transgenic Tobacco
    Zhang, Xu
    Liu, Xiaoxue
    Wu, Lei
    Yu, Guihong
    Wang, Xiue
    Ma, Hongxiang
    INTERNATIONAL JOURNAL OF GENOMICS, 2015, 2015
  • [22] Ectopic Expression of Pumpkin NAC Transcription Factor CmNAC1 Improves Multiple Abiotic Stress Tolerance in Arabidopsis
    Cao, Haishun
    Wang, Li
    Nawaz, Muhammad A.
    Niu, Mengliang
    Sun, Jingyu
    Xie, Junjun
    Kong, Qiusheng
    Huang, Yuan
    Cheng, Fei
    Bie, Zhilong
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [23] Ectopic expression of a rice transcription factor, Mybleu, enhances tolerance of transgenic plants of Carrizo citrange to low oxygen stress
    Caruso, Paola
    Baldoni, Elena
    Mattana, Monica
    Paolo, Donata Pietro
    Genga, Annamaria
    Coraggio, Immacolata
    Russo, Giuseppe
    Picchi, Valentina
    Recupero, Giuseppe Reforgiato
    Locatelli, Franca
    PLANT CELL TISSUE AND ORGAN CULTURE, 2012, 109 (02) : 327 - 339
  • [24] A Wheat WRKY Transcription Factor TaWRKY10 Confers Tolerance to Multiple Abiotic Stresses in Transgenic Tobacco
    Wang, Chen
    Deng, Pengyi
    Chen, Liulin
    Wang, Xiatian
    Ma, Hui
    Hu, Wei
    Yao, Ningcong
    Feng, Ying
    Chai, Ruihong
    Yang, Guangxiao
    He, Guangyuan
    PLOS ONE, 2013, 8 (06):
  • [25] Soybean transcription factor ORFeome associated with drought resistance: a valuable resource to accelerate research on abiotic stress resistance
    Chai, Chenglin
    Wang, Yongqin
    Joshi, Trupti
    Valliyodan, Babu
    Prince, Silvas
    Michel, Lydia
    Xu, Dong
    Nguyen, Henry T.
    BMC GENOMICS, 2015, 16
  • [26] TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis
    Mao, Xinguo
    Zhang, Hongying
    Qian, Xueya
    Li, Ang
    Zhao, Guangyao
    Jing, Ruilian
    JOURNAL OF EXPERIMENTAL BOTANY, 2012, 63 (08) : 2933 - 2946
  • [27] Over-expression of rice R1-type MYB transcription factor confers different abiotic stress tolerance in transgenic Arabidopsis
    Tiwari, Poonam
    Indoliya, Yuvraj
    Chauhan, Abhishek Singh
    Pande, Veena
    Chakrabarty, Debasis
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2020, 206
  • [28] Overexpression of Transcription Factor GmTGA15 Enhances Drought Tolerance in Transgenic Soybean Hairy Roots and Arabidopsis Plants
    Chen, Zhanyu
    Fang, Xiaokun
    Yuan, Xueshun
    Zhang, Yingying
    Li, Huiying
    Zhou, Ying
    Cui, Xiyan
    AGRONOMY-BASEL, 2021, 11 (01):
  • [29] Novel NAC Transcription Factor TaNAC67 Confers Enhanced Multi-Abiotic Stress Tolerances in Arabidopsis
    Mao, Xinguo
    Chen, Shuangshuang
    Li, Ang
    Zhai, Chaochao
    Jing, Ruilian
    PLOS ONE, 2014, 9 (01):
  • [30] Wheat Heat Shock Factor TaHsfA6f Increases ABA Levels and Enhances Tolerance to Multiple Abiotic Stresses in Transgenic Plants
    Bi, Huihui
    Zhao, Yue
    Li, Huanhuan
    Liu, Wenxuan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (09)