A Modified Nonlinear Schrodinger Equation for Interactions Between Waves and Shear Currents

被引:0
|
作者
Liao, Bo [1 ]
Dong, Guohai [1 ]
Ma, Yuxiang [1 ]
Ma, Xiaozhou [1 ]
机构
[1] Dalian Univ Technol, State Key Lab Coastal & Offshore Engn, Dalian, Peoples R China
关键词
Nonlinear Schrodinger equation; Linear shear currents; Modulational instability; Extreme waves; Peregrine Breather solution; FINITE-AMPLITUDE WAVES; WATER-WAVES; GRAVITY-WAVES; SURFACE-WAVES; FREAK WAVES; MODULATION; DEPTH; PACKETS;
D O I
暂无
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
A nonlinear Schrodinger equation for the propagation of two-dimensional surface gravity waves on linear shear currents in finite water depth is derived. In the derivation, linear shear currents are assumed to be a linear combination of depth-uniform currents and constant vorticity. Therefore, the equation includes the combined effects of depthuniform currents and constant vorticity. Furthermore, the influence of linear shear currents on the Peregrine breather is also studied. It is demonstrated that depth-uniform opposing currents can reduce the breather extension in finite water depth, but following currents has the adverse impact, indicating that a wave packets with freak waves formed on following currents contains more hazardous waves in finite water depth. However, the corresponding and coexisting vorticity can counteract the influence of currents. If the water depth is deep enough, both depth-uniform currents and vorticity have negligible effect on the characteristics of Peregrine breather.
引用
收藏
页码:10 / 21
页数:12
相关论文
共 50 条
  • [21] Solitary waves for nonlinear Schrodinger equation with derivative
    Miao, Changxing
    Tang, Xingdong
    Xu, Guixiang
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (04)
  • [22] Breathers, rogue waves and breather-rogue waves on a periodic background for the modified nonlinear Schrodinger equation
    Wu, Qing-Lin
    Zhang, Hai-Qiang
    WAVE MOTION, 2022, 110
  • [23] The structures and interactions of solitary waves in the (2+1)-dimensional nonlinear Schrodinger equation
    Bai, Cheng-Lin
    Zhao, Hong
    Wang, Xiao-Yuan
    NONLINEARITY, 2006, 19 (08) : 1697 - 1712
  • [24] A variety of solitary waves solutions for the modified nonlinear Schrodinger equation with conformable fractional derivative
    Sadaf, Maasoomah
    Arshed, Saima
    Akram, Ghazala
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (04)
  • [25] Standing waves for the nonlinear Schrodinger equation coupled with the Maxwell equation
    Colin, Mathieu
    Watanabe, Tatsuya
    NONLINEARITY, 2017, 30 (05) : 1920 - 1947
  • [26] Linear-shear-current modified Schrodinger equation for gravity waves in finite water depth
    Liao, B.
    Dong, G.
    Ma, Y.
    Gao, J. L.
    PHYSICAL REVIEW E, 2017, 96 (04)
  • [27] Solitons in a modified discrete nonlinear Schrodinger equation
    Molina, Mario I.
    SCIENTIFIC REPORTS, 2018, 8
  • [28] Spinning solitons of a modified nonlinear Schrodinger equation
    Brihaye, Y
    Hartmann, B
    Zakrzewski, WJ
    PHYSICAL REVIEW D, 2004, 69 (08): : 4
  • [29] Formation of solitons for the modified nonlinear Schrodinger equation
    Akram, Ghazala
    Sadaf, Maasoomah
    Arshed, Saima
    Raza, Muhammad Zubair
    Alzaidi, Ahmed S. M.
    MODERN PHYSICS LETTERS B, 2024, 38 (22):
  • [30] The modified nonlinear Schrodinger equation: facts and artefacts
    Doktorov, EV
    EUROPEAN PHYSICAL JOURNAL B, 2002, 29 (02): : 227 - 231