Euglenoid-Inspired Giant Shape Change for Highly Deformable Soft Robots

被引:35
作者
Digumarti, Krishna Manaswi [1 ,2 ]
Conn, Andrew T. [1 ,2 ,3 ]
Rossiter, Jonathan [1 ,2 ,4 ]
机构
[1] Univ Bristol, SoftLab, Bristol Robot Lab, Bristol BS16 1QY, Avon, England
[2] Univ West England, Bristol BS16 1QY, Avon, England
[3] Univ Bristol, Dept Mech Engn, Bristol BS8 1TR, Avon, England
[4] Univ Bristol, Dept Engn Math, Bristol BS8 1UB, Avon, England
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2017年 / 2卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
Biologically-inspired robots; flexible robots; soft material robotics; MOVEMENT; DESIGN;
D O I
10.1109/LRA.2017.2726113
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Nature has exploited softness and compliance in many different forms, from large cephalopods to microbial bacteria and algae. In all these cases, large body deformations are used for both object manipulation and locomotion. The great potential of soft robotics is to capture and replicate these capabilities in controllable robotic form. This letter presents the design of a bioinspired actuator capable of achieving a large volumetric change. Inspired by the changes in body shape seen in the euglena Eutreptiella spirogyra during its characteristic locomotion, a novel soft pneumatic actuator has been designed that exploits the hyperelastic properties of elastomers. We call this the hyperelastic bellows (HEB) actuator. The result is a structure that works under both positive and negative pressure to achieve euglenoid-like multimodal actuation. Axial expansion of 450% and a radial expansion of 80% have been observed, along with a volumetric change of 300 times. Furthermore, the design of a segmented robot with multiple chambers is presented, which demonstrates several of the characteristic shapes adopted by the euglenoid in its locomotion cycle. This letter shows the potential of this new soft actuation mechanism to realise biomimetic soft robotics with giant shape changes.
引用
收藏
页码:2302 / 2307
页数:6
相关论文
共 28 条
[1]   Shape control of active surfaces inspired by the movement of euglenids [J].
Arroyo, Marino ;
DeSimone, Antonio .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2014, 62 :99-112
[2]   Reverse engineering the euglenoid movement [J].
Arroyo, Marino ;
Heltai, Luca ;
Millan, Daniel ;
DeSimone, Antonio .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (44) :17874-17879
[3]   Continuous wave peristaltic motion in a robot [J].
Boxerbaum, Alexander S. ;
Shaw, Kendrick M. ;
Chiel, Hillel J. ;
Quinn, Roger D. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2012, 31 (03) :302-318
[4]   Bioinspired Soft Actuation System Using Shape Memory Alloys [J].
Cianchetti, Matteo ;
Licofonte, Alessia ;
Follador, Maurizio ;
Rogai, Francesco ;
Laschi, Cecilia .
ACTUATORS, 2014, 3 (03) :226-244
[5]  
Cianchetti M, 2013, IEEE INT C INT ROBOT, P3576, DOI 10.1109/IROS.2013.6696866
[6]  
Conn A. T., 2014, P SPIE SMART STRUCT
[7]   Finite Element Analysis and Design Optimization of a Pneumatically Actuating Silicone Module for Robotic Surgery Applications [J].
Elsayed, Yahya ;
Vincensi, Augusto ;
Lekakou, Constantina ;
Geng, Tao ;
Saaj, C. M. ;
Ranzani, Tommaso ;
Cianchetti, Matteo ;
Menciassi, Arianna .
SOFT ROBOTICS, 2014, 1 (04) :255-262
[8]   Worm-Like Robotic Locomotion with a Compliant Modular Mesh [J].
Horchler, Andrew D. ;
Kandhari, Akhil ;
Daltorio, Kathryn A. ;
Moses, Kenneth C. ;
Andersen, Kayla B. ;
Bunnelle, Hillary ;
Kershaw, Joseph ;
Tavel, William H. ;
Bachmann, Richard J. ;
Chiel, Hillel J. ;
Quinn, Roger D. .
BIOMIMETIC AND BIOHYBRID SYSTEMS, LIVING MACHINES 2015, 2015, 9222 :26-37
[9]  
Hunt T., OZYS RECORD JAR OPEN
[10]   Soft Robotics for Chemists [J].
Ilievski, Filip ;
Mazzeo, Aaron D. ;
Shepherd, Robert E. ;
Chen, Xin ;
Whitesides, George M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (08) :1890-1895