Optimal parameter estimation of dynamical systems using direct transcription methods

被引:9
作者
Williams, P [1 ]
Trivailo, P [1 ]
机构
[1] Sch Aerosp Mech & Mfg Engn, Bundoora, Vic 3083, Australia
关键词
parameter estimation; direct transcription; collocation; nonlinear programming;
D O I
10.1080/17415970500104499
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Parameter estimation of dynamical systems governed by ordinary differential equations is formulated as a discrete nonlinear programming problem. The dynamical constraints are transcribed as a set of equality constraints that are driven to zero by a sparse sequential quadratic programming algorithm. Five different transcription methods are examined: Heart's method, Hermite-Simpson, 5th degree Hermite-Legendre-Gauss-Lobatto, pseudospectral, and a 5th-order Legendre-Gauss-Lobatto integration method. Each method transcribes the differential equations in a different way and with different orders of accuracy. The parameter estimation problem is formulated by minimizing a weighted least squares cost function consisting of the sum of squares of the difference between measured state values and the approximate state values from the different transcription methods. The parameter estimation algorithm is applied to four different problems from biochemistry, physics, robotics, and aerospace to demonstrate some of its features and performance differences. For the same number of optimization parameters, the 5th-degree Hermite-Legendre Gauss-Lobatto method, on average, gives the best combination of speed and accuracy for the problems studied.
引用
收藏
页码:377 / 409
页数:33
相关论文
共 50 条
  • [31] Parameter estimation of chaotic dynamical systems using LS-based cost functions on the state space
    Mousazadeh, Ali
    Shekofteh, Yasser
    PRAMANA-JOURNAL OF PHYSICS, 2021, 96 (01):
  • [32] State and parameter estimation in nonlinear systems as an optimal tracking problem
    Creveling, Daniel R.
    Gill, Philip E.
    Abarbanel, Henry D. I.
    PHYSICS LETTERS A, 2008, 372 (15) : 2640 - 2644
  • [33] A computational method for solving optimal control and parameter estimation of linear systems using Haar wavelets
    Karimi, HR
    Lohmann, B
    Maralani, PJ
    Moshiri, B
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (09) : 1121 - 1132
  • [34] Parameter Estimation for Nonlinear Disease Dynamical System using Particle Filter
    Rehman, M. Javvad Ur
    Dass, Sarat Chandra
    Asirvadam, Vijanth Sagayan
    Adly, Ahmed
    2015 INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL, INFORMATICS AND ITS APPLICATIONS (IC3INA), 2015, : 143 - 147
  • [35] Optimal estimation of parameters of dynamical systems by neural network collocation method
    Liaqat, A
    Fukuhara, M
    Takeda, T
    COMPUTER PHYSICS COMMUNICATIONS, 2003, 150 (03) : 215 - 234
  • [36] Parameter estimation for stiff deterministic dynamical systems via ensemble Kalman filter
    Arnold, Andrea
    Calvetti, Daniela
    Somersalo, Erkki
    INVERSE PROBLEMS, 2014, 30 (10)
  • [37] Improved parameter estimation from noisy time series for nonlinear dynamical systems
    Nakamura, Tomomichi
    Hirata, Yoshito
    Judd, Kevin
    Kilminster, Devin
    Small, Michael
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (05): : 1741 - 1752
  • [38] Identification of noisy dynamical systems with parameter estimation based on Hopfield neural networks
    Atencia, Miguel
    Joya, Gonzalo
    Sandoval, Francisco
    NEUROCOMPUTING, 2013, 121 : 14 - 24
  • [39] Vibration parameter estimation methods for ultrasonic measurement systems - a review
    Singh, Kshetrimayum Milan
    Sumathi, Parasuraman
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2015, 9 (04) : 492 - 504
  • [40] Convergence rates for direct transcription of optimal control problems using collocation at Radau points
    Kameswaran, Shivakurnar
    Biegler, Lorenz T.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2008, 41 (01) : 81 - 126