Optimal parameter estimation of dynamical systems using direct transcription methods

被引:9
作者
Williams, P [1 ]
Trivailo, P [1 ]
机构
[1] Sch Aerosp Mech & Mfg Engn, Bundoora, Vic 3083, Australia
关键词
parameter estimation; direct transcription; collocation; nonlinear programming;
D O I
10.1080/17415970500104499
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Parameter estimation of dynamical systems governed by ordinary differential equations is formulated as a discrete nonlinear programming problem. The dynamical constraints are transcribed as a set of equality constraints that are driven to zero by a sparse sequential quadratic programming algorithm. Five different transcription methods are examined: Heart's method, Hermite-Simpson, 5th degree Hermite-Legendre-Gauss-Lobatto, pseudospectral, and a 5th-order Legendre-Gauss-Lobatto integration method. Each method transcribes the differential equations in a different way and with different orders of accuracy. The parameter estimation problem is formulated by minimizing a weighted least squares cost function consisting of the sum of squares of the difference between measured state values and the approximate state values from the different transcription methods. The parameter estimation algorithm is applied to four different problems from biochemistry, physics, robotics, and aerospace to demonstrate some of its features and performance differences. For the same number of optimization parameters, the 5th-degree Hermite-Legendre Gauss-Lobatto method, on average, gives the best combination of speed and accuracy for the problems studied.
引用
收藏
页码:377 / 409
页数:33
相关论文
共 50 条
  • [1] Parameter Estimation of Chaotic Dynamical Systems Using HEQPSO
    Ko, Chia-Nan
    Jau, You-Min
    Jeng, Jin-Tsong
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2015, 31 (02) : 675 - 689
  • [2] Optimal initial state for fast parameter estimation in nonlinear dynamical systems
    Li, Qiaochu
    Jauberthie, Carine
    Denis-Vidal, Lilianne
    Cherfi, Zohra
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 171 : 109 - 117
  • [3] PARAMETER AND UNCERTAINTY ESTIMATION FOR DYNAMICAL SYSTEMS USING SURROGATE STOCHASTIC PROCESSES
    Chung, Matthias
    Binois, Mickael
    Gramacy, Robert B.
    Bardsley, Johnathan M.
    Moquin, David J.
    Smith, Amanda P.
    Smith, Amber M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04) : A2212 - A2238
  • [4] Hamiltonian Monte Carlo methods for efficient parameter estimation in steady state dynamical systems
    Kramer, Andrei
    Calderhead, Ben
    Radde, Nicole
    BMC BIOINFORMATICS, 2014, 15
  • [5] Hamiltonian Monte Carlo methods for efficient parameter estimation in steady state dynamical systems
    Andrei Kramer
    Ben Calderhead
    Nicole Radde
    BMC Bioinformatics, 15
  • [6] Parameter Estimation for ARMAX Systems Using Bias Compensation Methods
    Zhang Yong
    Cui Gui-mei
    Liu Xin
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 5029 - 5033
  • [7] Optimal input design for parameter estimation in a bounded-error context for nonlinear dynamical systems
    Jauberthie, Carine
    Denis-Vidal, Lilianne
    Li, Qiaochu
    Cherfi-Boulanger, Zohra
    AUTOMATICA, 2018, 92 : 86 - 91
  • [8] DIRECT AND INTEGRATION METHODS OF PARAMETER-ESTIMATION IN GROUNDWATER TRANSPORT-SYSTEMS
    XIANG, JN
    ELSWORTH, D
    APPLIED MATHEMATICAL MODELLING, 1992, 16 (08) : 404 - 413
  • [9] Neural network architectures for parameter estimation of dynamical systems
    Raol, JR
    Madhuranath, H
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1996, 143 (04): : 387 - 394
  • [10] Parameter estimation methods for nonlinear systems
    Li, Junhong
    Ding, Rui
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4278 - 4287