Liquid polymer nano-PEBBLEs for Cl- analysis and biological applications

被引:47
作者
Brasuel, MG
Miller, TJ
Kopelman, R [1 ]
Philbert, MA
机构
[1] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Environm Hlth Sci, Ann Arbor, MI 48109 USA
关键词
D O I
10.1039/b305254k
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The first nanometer scale anion sensing fluorescent spherical nanosensors, or PEBBLEs (probes encapsulated by biologically localized embedding) have been developed for the intracellular monitoring of chloride. The general scheme for the polymerization and introduction of sensing components creates a matrix that allows for the utilization of the highly selective ionophores used in poly(vinyl chloride) and poly(decyl methacrylate) ion-selective electrodes. We have demonstrated that our previously developed scheme for cation sensors can be utilized to tailoring selective submicron sensors for use in intracellular measurements of biologically relevant anions for which selective enough fluorescent probes do not exist. Three schemes were attempted for the development of chloride sensitive PEBBLEs. The first two used the Chloride ionophore indium(III) octaethylporphyrin chloride (In(OEP)Cl) (1) as an ionophore working in tandem with a chromoionophore and (2) as a chromoionophore with a peak shift generated by chloride mediated breaking of hydroxide ion-bridged porphyrin dimer. The third method used the optically silent Chloride ionophore III (ETH 9033) working in tandem with chromoionophore III ( ETH 5350) to indirectly monitor Cl- activity by reporting the H+ coextracted into the matrix. Method 3 gave the most promising results, at a pH of 7.2 these PEBBLEs have a limit of detection of 0.2 mM Cl- with a linear dynamic range of 0.4 mM-190 mM Cl-. These PEBBLEs were delivered into C6 glioma cells, utilizing a gene gun, and intracellular chloride levels were monitored during ion-channel stimulation by kainic acid.
引用
收藏
页码:1262 / 1267
页数:6
相关论文
共 19 条
[1]  
[Anonymous], 1992, LIFE SCI BIOL
[2]   SELECTIVITY OF ION-SENSITIVE BULK OPTODES [J].
BAKKER, E ;
SIMON, W .
ANALYTICAL CHEMISTRY, 1992, 64 (17) :1805-1812
[3]   ANION-SELECTIVE MEMBRANE ELECTRODES BASED ON METALLOPORPHYRINS - THE INFLUENCE OF LIPOPHILIC ANIONIC AND CATIONIC SITES ON POTENTIOMETRIC SELECTIVITY [J].
BAKKER, E ;
MALINOWSKA, E ;
SCHILLER, RD ;
MEYERHOFF, ME .
TALANTA, 1994, 41 (06) :881-890
[4]   Utilization of lipophilic ionic additives in liquid polymer film optodes for selective anion activity measurements [J].
Barker, SLR ;
Shortreed, MR ;
Kopelman, R .
ANALYTICAL CHEMISTRY, 1997, 69 (06) :990-995
[5]   Nitrite- and chloride-selective fluorescent nano-optodes and in in vitro application to rat conceptuses [J].
Barker, SLR ;
Thorsrud, BA ;
Kopelman, R .
ANALYTICAL CHEMISTRY, 1998, 70 (01) :100-104
[6]   Fluorescent nanosensors for intracellular chemical analysis: Decyl methacrylate liquid polymer matrix and ion exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells [J].
Brasuel, M ;
Kopelman, R ;
Miller, TJ ;
Tjalkens, R ;
Philbert, MA .
ANALYTICAL CHEMISTRY, 2001, 73 (10) :2221-2228
[7]  
BRASUEL M, 2002, THESIS U MICHIGAN AN
[8]  
BRASUEL M, 2002, IN PRESS P IEEE SENS
[9]   Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors [J].
Buhlmann, P ;
Pretsch, E ;
Bakker, E .
CHEMICAL REVIEWS, 1998, 98 (04) :1593-1687
[10]   Mechanistic insights into the development of optical chloride sensors based on the [9]mercuracarborand-3 ionophore [J].
Ceresa, A ;
Qin, Y ;
Peper, S ;
Bakker, E .
ANALYTICAL CHEMISTRY, 2003, 75 (01) :133-140