Accelerated Dynamic Magnetic Resonance Imaging Using Learned Representations: A New Frontier in Biomedical Imaging

被引:6
作者
Christodoulou, Anthony G. [1 ,2 ,3 ,4 ,5 ]
Lingala, Sajan Goud [2 ,6 ,7 ,8 ]
机构
[1] Cedars Sinai Med Ctr, Biomed Imaging Res Inst, Los Angeles, CA 90048 USA
[2] IEEE, Piscataway, NJ 08854 USA
[3] SCMR, Mt Royal, NJ 08061 USA
[4] Int Soc Magnet Resonance Med, Concord, CA 94520 USA
[5] Amer Heart Assoc, Dallas, TX 75231 USA
[6] Univ Iowa, Dept Biomed Engn, Iowa City, IA 52242 USA
[7] Univ Iowa, Dept Radiol, Iowa City, IA 52242 USA
[8] ISMRM, Concord, CA USA
关键词
MRI; RECONSTRUCTION; REGULARIZATION; SPARSITY; MODEL; FRAMEWORK;
D O I
10.1109/MSP.2019.2942180
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dynamic magnetic resonance imaging (MRI) can be used to scan a wide range of dynamic processes within the body, including the motion of internal organs, tissue-level nuclear magnetic resonance (NMR) relaxation, and dynamic contrast enhancement (DCE) of dye agents. The ability of MRI to safely provide unique soft-tissue contrast and comprehensive functional information has made dynamic MRI central to a number of imaging exams for cardiac, interventional, vocal tract, cancer, and gastrointestinal applications, among others. Unfortunately, MRI is a notoriously slow imaging modality due to fundamental physical and physiological limitations. These limitations result in tradeoffs between spatial and temporal resolutions, spatial coverage, and the signal-to-noise ratio and have made dynamic MRI a challenging technical goal. © 1991-2012 IEEE.
引用
收藏
页码:83 / 93
页数:11
相关论文
共 40 条
[1]   MoDL: Model-Based Deep Learning Architecture for Inverse Problems [J].
Aggarwal, Hemant K. ;
Mani, Merry P. ;
Jacob, Mathews .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) :394-405
[2]   Patient-adapted reconstruction and acquisition dynamic imaging method (PARADIGM) for MRI [J].
Aggarwal, Nitin ;
Bresler, Yoram .
INVERSE PROBLEMS, 2008, 24 (04)
[3]   Low-dimensional-Structure Self-Learning and Thresholding: Regularization Beyond Compressed Sensing for MRI Reconstruction [J].
Akcakaya, Mehmet ;
Basha, Tamer A. ;
Goddu, Beth ;
Goepfert, Lois A. ;
Kissinger, Kraig V. ;
Tarokh, Vahid ;
Manning, Warren J. ;
Nezafat, Reza .
MAGNETIC RESONANCE IN MEDICINE, 2011, 66 (03) :756-767
[4]  
[Anonymous], [No title captured]
[5]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[6]   Dynamic MRI using model-based deep learning and SToRM priors: MoDL-SToRM [J].
Biswas, Sampurna ;
Aggarwal, Hemant K. ;
Jacob, Mathews .
MAGNETIC RESONANCE IN MEDICINE, 2019, 82 (01) :485-494
[7]   High-dimensionality undersampled patch-based reconstruction (HD-PROST) for accelerated multi-contrast MRI [J].
Bustin, Aurelien ;
da Cruz, Gastao Lima ;
Jaubert, Olivier ;
Lopez, Karina ;
Botnar, Rene M. ;
Prieto, Claudia .
MAGNETIC RESONANCE IN MEDICINE, 2019, 81 (06) :3705-3719
[8]   Motion-Compensated Compressed Sensing for Dynamic Contrast-Enhanced MRI Using Regional Spatiotemporal Sparsity and Region Tracking: Block LOw-rank Sparsity with Motion-guidance (BLOSM) [J].
Chen, Xiao ;
Salerno, Michael ;
Yang, Yang ;
Epstein, Frederick H. .
MAGNETIC RESONANCE IN MEDICINE, 2014, 72 (04) :1028-1038
[9]   Comprehensive Multi-Dimensional MRI for the Simultaneous Assessment of Cardiopulmonary Anatomy and Physiology [J].
Cheng, Joseph Y. ;
Zhang, Tao ;
Alley, Marcus T. ;
Uecker, Martin ;
Lustig, Michael ;
Pauly, John M. ;
Vasanawala, Shreyas S. .
SCIENTIFIC REPORTS, 2017, 7
[10]   Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging [J].
Christodoulou, Anthony G. ;
Shaw, Jaime L. ;
Nguyen, Christopher ;
Yang, Qi ;
Xie, Yibin ;
Wang, Nan ;
Li, Debiao .
NATURE BIOMEDICAL ENGINEERING, 2018, 2 (04) :215-226