Face recognition using kernel entropy component analysis

被引:37
作者
Shekar, B. H. [2 ]
Kumari, M. Sharmila [1 ]
Mestetskiy, Leonid M. [3 ]
Dyshkant, Natalia F. [3 ]
机构
[1] PA Coll Engn, Dept Comp Sci & Engn, Mangalore, Karnataka, India
[2] Mangalore Univ, Dept Comp Sci, Mangalore, Karnataka, India
[3] Moscow MV Lomonosov State Univ, Dept Computat Math & Cybernet, Moscow, Russia
关键词
Principal component analysis; Entropy component analysis; Eigenface; Face recognition; EIGENFACES;
D O I
10.1016/j.neucom.2010.10.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this letter, we have reported a new face recognition algorithm based on Renyi entropy component analysis. In the proposed model, kernel-based methodology is integrated with entropy analysis to choose the best principal component vectors that are subsequently used for pattern projection to a lower-dimensional space. Extensive experimentation on Yale and UMIST face database has been conducted to reveal the performance of the entropy based principal component analysis method and comparative analysis is made with the kernel principal component analysis method to signify the importance of selection of principal component vectors based on entropy information rather based only on magnitude of eigenvalues. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1053 / 1057
页数:5
相关论文
共 7 条
[1]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[2]   Kernel Entropy Component Analysis [J].
Jenssen, Robert .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (05) :847-860
[3]  
Kim KI, 2002, IEEE SIGNAL PROC LET, V9, P40, DOI 10.1109/97.991133
[4]   Face recognition using kernel direct discriminant analysis algorithms [J].
Lu, JW ;
Plataniotis, KN ;
Venetsanopoulos, AN .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (01) :117-126
[5]   ESTIMATION OF A PROBABILITY DENSITY-FUNCTION AND MODE [J].
PARZEN, E .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (03) :1065-&
[6]   Input space versus feature space in kernel-based methods [J].
Schölkopf, B ;
Mika, S ;
Burges, CJC ;
Knirsch, P ;
Müller, KR ;
Rätsch, G ;
Smola, AJ .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (05) :1000-1017
[7]   EIGENFACES FOR RECOGNITION [J].
TURK, M ;
PENTLAND, A .
JOURNAL OF COGNITIVE NEUROSCIENCE, 1991, 3 (01) :71-86