Semiparametric maximum likelihood estimation with data missing not at random
被引:30
|
作者:
Morikawa, Kosuke
论文数: 0引用数: 0
h-index: 0
机构:
Osaka Univ, Grad Sch Engn Sci, Osaka 5600043, JapanOsaka Univ, Grad Sch Engn Sci, Osaka 5600043, Japan
Morikawa, Kosuke
[1
]
Kim, Jae Kwang
论文数: 0引用数: 0
h-index: 0
机构:
Iowa State Univ, Dept Stat, Ames, IA 50010 USAOsaka Univ, Grad Sch Engn Sci, Osaka 5600043, Japan
Kim, Jae Kwang
[2
]
Kano, Yutaka
论文数: 0引用数: 0
h-index: 0
机构:
Osaka Univ, Grad Sch Engn Sci, Osaka 5600043, JapanOsaka Univ, Grad Sch Engn Sci, Osaka 5600043, Japan
Kano, Yutaka
[1
]
机构:
[1] Osaka Univ, Grad Sch Engn Sci, Osaka 5600043, Japan
[2] Iowa State Univ, Dept Stat, Ames, IA 50010 USA
来源:
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE
|
2017年
/
45卷
/
04期
关键词:
Incomplete data;
Kernel smoothing;
missing not at random (MNAR);
MSC 2010: Primary 62D99;
secondary;
62F12;
ESTIMATING EQUATIONS;
SENSITIVITY ANALYSIS;
MEAN FUNCTIONALS;
INFERENCE;
IMPUTATION;
D O I:
10.1002/cjs.11340
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Nonresponse is frequently encountered in empirical studies. When the response mechanism is missing not at random (MNAR) statistical inference using the observed data is quite challenging. Handling MNAR data often requires two model assumptions: one for the outcome and the other for the response propensity. Correctly specifying these two model assumptions is challenging and difficult to verify from the responses obtained. In this article we propose a semiparametric maximum likelihood method for MNAR data in the sense that a parametric assumption is used for the response propensity part of the model and a nonparametric model is used for the outcome part. The resulting analysis is more robust than the fully parametric approach. Some asymptotic properties of our estimators are derived. Results from a simulation study are also presented. The Canadian Journal of Statistics 45: 393-409; 2017 (c) 2017 Statistical Society of Canada
机构:
Yunnan Univ, Dept Stat, Kunming, Yunnan, Peoples R ChinaYunnan Univ, Dept Stat, Kunming, Yunnan, Peoples R China
Zhao, Puying
Wang, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Stat & Data Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaYunnan Univ, Dept Stat, Kunming, Yunnan, Peoples R China
Wang, Lei
Shao, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Dept Stat, Madison, WI 53706 USAYunnan Univ, Dept Stat, Kunming, Yunnan, Peoples R China