Global existence of weak solutions for two-dimensional semilinear wave equations with strong damping in an exterior domain

被引:22
作者
Ikehata, Ryo [1 ]
Inoue, Yu-ki [1 ]
机构
[1] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
关键词
semilinear wave equation; strong damping; exterior domain; weak solution; global existence; energy decay;
D O I
10.1016/j.na.2006.10.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider two-dimensional mixed problems in an exterior domain for a semilinear strongly damped wave equation with a power-type nonlineatity vertical bar u vertical bar(p). If the initial data have a small weighted energy, we shall derive a global existence and energy decay results in the case when the power p of the nonlinear term satisfies p > 6. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:154 / 169
页数:16
相关论文
共 25 条
[1]   ON THE STRONGLY DAMPED WAVE-EQUATION - UU-DELTA-U-DELTA-UT + F(U)=0 [J].
ANG, DD ;
DINH, APN .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (06) :1409-1418
[2]  
[Anonymous], 1980, OSAKA J MATH
[3]   Local well posedness for strongly damped wave equations with critical nonlinearities [J].
Carvalho, AN ;
Cholewa, JW .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 66 (03) :443-463
[4]   Strongly damped wave equation in uniform spaces [J].
Cholewa, JW ;
Dlotko, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (01) :174-187
[5]  
Conti M., 2005, Commun. Appl. Anal., V9, P161
[6]   Stabilization and control for the subcritical semilinear wave equation [J].
Dehman, B ;
Lebeau, G ;
Zuazua, E .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2003, 36 (04) :525-551
[7]   STRONGLY DAMPED QUASILINEAR EVOLUTION-EQUATIONS [J].
FITZGIBBON, WE .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 79 (02) :536-550
[8]   Global solutions and finite time blow up for damped semilinear wave equations [J].
Gazzola, F ;
Squassina, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (02) :185-207
[9]  
Georgiev V., 1996, GLOBAL SOLUTION NONL, P1
[10]   ON EXISTENCE UNIQUENESS AND STABILITY OF SOLUTIONS OF EQUATION RHOOCHITT = EPSILON(CHIX) + LAMBDACHIXXT [J].
GREENBER.JM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1969, 25 (03) :575-&