Localization capability and limitation of electron-multiplying charge-coupled, scientific complementary metal-oxide semiconductor, and charge-coupled devices for superresolution imaging

被引:48
作者
Quan, Tingwei [1 ,2 ]
Zeng, Shaoqun [1 ]
Huang, Zhen-Li [1 ]
机构
[1] Huazhong Univ Sci & Technol, Britton Chance Ctr Biomed Photon, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Hubei Univ Educ, Coll Math & Econ, Wuhan 430205, Peoples R China
基金
中国国家自然科学基金;
关键词
single molecule localization; superresolution microscopy; low-light detector; noise model; maximum likelihood method; POINT-SPREAD FUNCTION; FLUORESCENCE MICROSCOPY; RESOLUTION; MULTIPLICATION; OPTIMIZATION; NANOSCOPY; PROTEIN;
D O I
10.1117/1.3505017
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Localization of a single fluorescent molecule is required in a number of superresolution imaging techniques for visualizing biological structures at cellular and subcellular levels. The localization capability and limitation of low-light detectors are critical for such a purpose. We present an updated evaluation on the performance of three typical low-light detectors, including a popular electron-multiplying CCD (EMCCD), a newly developed scientific CMOS (sCMOS), and a representative cooled CCD, for superresolution imaging. We find that under some experimental accessible conditions, the sCMOS camera shows a competitive and even better performance than the EMCCD camera, which has long been considered the detector of choice in the field of superresolution imaging. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3505017]
引用
收藏
页数:6
相关论文
共 28 条
[1]   A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles [J].
Aguet, F ;
Van De Ville, D ;
Unser, M .
OPTICS EXPRESS, 2005, 13 (26) :10503-10522
[2]   Localization of a fluorescent source without numerical fitting [J].
Andersson, Sean B. .
OPTICS EXPRESS, 2008, 16 (23) :18714-18724
[3]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[4]   Two-color far-field fluorescence nanoscopy based on photoswitchable emitters [J].
Bock, H. ;
Geisler, C. ;
Wurm, C. A. ;
Von Middendorff, C. ;
Jakobs, S. ;
Schoenle, A. ;
Egner, A. ;
Hell, S. W. ;
Eggeling, C. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2007, 88 (02) :161-165
[5]   Photon transfer methods and results for electron multiplication CCDs [J].
DeWeert, MJ ;
Cole, JB ;
Sparks, AW ;
Acker, A .
APPLICATIONS OF DIGITAL IMAGE PROCESSING XXVII, PTS 1AND 2, 2004, 5558 :248-259
[6]   Imaging biological structures with fluorescence photoactivation localization microscopy [J].
Gould, Travis J. ;
Verkhusha, Vladislav V. ;
Hess, Samuel T. .
NATURE PROTOCOLS, 2009, 4 (03) :291-308
[7]   Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution [J].
Gustafsson, MGL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (37) :13081-13086
[8]   Far-field optical nanoscopy [J].
Hell, Stefan W. .
SCIENCE, 2007, 316 (5828) :1153-1158
[9]   BREAKING THE DIFFRACTION RESOLUTION LIMIT BY STIMULATED-EMISSION - STIMULATED-EMISSION-DEPLETION FLUORESCENCE MICROSCOPY [J].
HELL, SW ;
WICHMANN, J .
OPTICS LETTERS, 1994, 19 (11) :780-782
[10]   Ultra-high resolution imaging by fluorescence photoactivation localization microscopy [J].
Hess, Samuel T. ;
Girirajan, Thanu P. K. ;
Mason, Michael D. .
BIOPHYSICAL JOURNAL, 2006, 91 (11) :4258-4272